Now Reading
Invasion front dynamics in interactive populations in environments with bars
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Invasion front dynamics in interactive populations in environments with bars

  • 1.

    Williamson, M. & Griffiths, B. Biological Invasions (Springer, New York, 1996).


    Google Scholar

  • 2.

    Ricciardi, A. et.Invasion science: A horizon scan for emerging challenges and opportunities Trends Ecol. Evolut. 32, 464474 (2017).


    Google Scholar

  • 3.

    Van Saarloos, W. Front propagation into unstable states. Phys. Rep. 386, 29222 (2003).

    MATH
    ADS

    Google Scholar

  • 4.

    OMalley L. Korniss G. & Caraco TM. Ecological invasion, roughened Fronts and a competitor extreme advance: integrating stochastic space-growth models. Bull. Math. Biol. 71, 11601188 (2009).

    MathSciNet
    MATH

    Google Scholar

  • 5.

    Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The mathematics behind biological invasions Vol. 44 (Springer, New York, 2016).

    MATH

    Google Scholar

  • 6.

    Fisher, R. A. The wave of positive genes. Ann. Eugenics 7, 355369 (1937).

    MATH

    Google Scholar

  • 7.

    Lavergne, S. & Molofsky, J. An invasive grass’s success is driven by its genetic variation and evolutionary potential. Proc. Natl. Acad. Sci. 104, 38833888 (2007).

    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 8.

    Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against the cancer. Nat. Rev. Rev. 14, 371380 (2014).

    CAS
    PubMed

    Google Scholar

  • 9.

    Wolf, K. et.Physical limits of cell movement: Control by ecm space, nuclear deformation, and tuning by proteolysis or traction force. J. Cell Biol. 201, 10691084 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 10.

    Lu, P.; Takai K.; Weaver V. M. & Werb Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Persp. Cold Spring Harbor Biol. 3, a005058 (2011).


    Google Scholar

  • 11.

    Wirtz, D.; Konstantopoulos K. & Searson P. C. The Physics of Cancer: The role of physical interactions & mechanical forces in metastasis. Nat. Rev. Rev. 11, 512522 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 12.

    Spill F., Reynolds D. S. and Kamm R. D. & Zaman M. H. Effect of the physical environment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40, 4148 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 13.

    Hanahan, D. & Weinberg, R. A. The hallmarks and symptoms of cancer. Cell 100, 5770 (2000).

    CAS
    PubMed

    Google Scholar

  • 14.

    Hanahan (D.) & Weinberg (R. A. Hallmarks in cancer: the next generation. Cell 144, 646674 (2011).

    CAS

    Google Scholar

  • 15.

    Azimzade, Y. & Saberi, A. A. Short-range migration can alter the evolutionary dynamics of solid tumors. J. Stat. Mech. Theory Exp. 2019, 103502 (2019).

    MathSciNet
    MATH

    Google Scholar

  • 16.

    West, J., Schenck, R., Gatenbee, C., Robertson-Tessi, M. & Anderson, A.R. Tissue structure accelerates evolution: premalignant sweeps precede neutral expansion. bioRxiv 542019 (2019).

  • 17.

    Maley, C. C. et.Classifying the ecological and evolutionary features of neoplasms. Nat. Rev. Rev. 17, 605619 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 18.

    Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther E. J. Tumour cells heterogeneity maintained through cooperating subclones in wnt driven mammary cancers Nature 508, 113117 (2014).

    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 19.

    Shahriari, K. etal.In the bone metastatic space, heterogeneous cells of prostate cancer can cooperate. Oncogene (2016).

  • 20.

    Calbo, J. et.A mouse model of small-cell lung cancer shows a functional role for tumor cell heterogeneity. Cancer Cell 19, 244256 (2011).

    CAS
    PubMed

    Google Scholar

  • 21.

    Martn-Pardillos, A. et.The role of clonal communication in breast cancer and heterogeneity in it. BMC Cancer 19, 126 (2019).


    Google Scholar

  • 22.

    Kim, T.-M. et.Subclonal genetic architectures of metastatic and primary colorectal cancers based upon intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 44614472 (2015).

    CAS
    PubMed

    Google Scholar

  • 23.

    Yachida, S. et.Later in the genetic evolution pancreatic cancer, distant metastasis can occur. Nature 467, 1114 (2010).

    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 24.

    Campbell, P. J. et.The dynamics and patterns that characterize genomic instability in metastatic pancreatic carcinoma. Nature 467, 1109 (2010).

    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 25.

    Capp, J.-P. et.Group phenotypic structure in cancer. Elife 10, e63518 (2021).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 26.

    Murray, J.D. Mathematical biology I: An introduction (2003).

  • 27.

    Mikhailov A., Schimansky Geier L. & Ebeling W. Stochastic motion in bistable media. Phys. Lett. A 96, 453456 (1983).

    MathSciNet
    ADS

    Google Scholar

  • 28.

    Hatzikirou, H., Brusch, L., Schaller, C., Simon, M. & Deutsch, A. Prediction of traveling behavior in a lattice -gas cellular automaton model to predict tumor invasion. Comput. Math. Appl. 59, 23262339 (2010).

    MathSciNet
    MATH

    Google Scholar

  • 29.

    Azimzade, Y., Sasar, M. & Maleki, I. Invasion front dynamics and disordered environments. Sci. Rep. 10, 110 (2020).


    Google Scholar

  • 30.

    Azimzade, Y., Saberi, A. A. A. Phys. Rev. Rev. 100, 062409 (2019).

    PubMed
    ADS

    Google Scholar

  • 31.

    Rapin, G. et.The roughness and dynamics proliferating cell fronts is used as a probe for cell-cell interactions. Sci. Rep. 11, 19 (2021).

    ADS

    Google Scholar

  • 32.

    Prez-Beteta, J. etal.The survival and response to surgery of patients with glioblastoma is predicted by the tumor surface regularity on mri imaging. Radiology 171051 (2018).

  • 33.

    Prez-Beteta, J. etal.Pretreatment survival prediction for glioblastoma is possible with mri-based morphological features. Eur. Radiol. 110 (2018).

  • 34.

    Br, A. et.The tumor growth process is extremely complex. Phys. Rev. Lett. 81, 4008 (1998).

    ADS

    Google Scholar

  • 35.

    Br, A., Albertos, S., Subiza, J. L., Garca-Asenjo, J. L. & Br, I. The universal dynamics that govern tumor growth. Biophys. J. 85, 29482961 (2003).

    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 36.

    Huergo, M., Pasquale, M., Gonzlez, P., Bolzn, A. & Arvia, A. Comparison of non-cancerous cells and cancer cell colonies: Growth dynamics Phys. Rev. Rev. 85, 011918 (2012).

    CAS
    ADS

    Google Scholar

  • 37.

    Munn L. L. Dynamics and tissue topology during metastasis and cancer invasion. Phys. Biol. 10, 065003 (2013).

    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 38.

    Dey, B., Sekhar, G.R. & Mukhopadhyay, S.K. In vivo mimicking model of solid tumor towards hydromechanics tissue deformation and creation necrosis. J. Biol. Phys. 140 (2018).

  • 39.

    Block, M., Schll E & Drasdo D. Classifying expansion kinetics as well as critical surface dynamics of growing cell population growth cells. Phys. Rev. Lett. 99, 248101 (2007).

    CAS
    PubMed
    ADS

    Google Scholar

  • 40.

    Moglia (B.), Guisoni (N.) & Albano (E.V.) Interfacial properties of a discrete model to study tumor growth. Phys. Rev. Rev. 87, 032713 (2013).

    ADS

    Google Scholar

  • 41.

    Moglia B., Albano E. V., & Guisoni N. Pinning and depinning transition in a stochastic growing model for the evolution cells colony fronts. Phys. Rev. Rev. 94, 052139 (2016).

    PubMed
    ADS

    Google Scholar

  • 42.

    Scianna, M. and Preziosi L. A hybrid model that describes different morphologies for tumor invasion fronts. Math. Model. Nat. Phenom. 7, 78104 (2012).

    MathSciNet
    MATH

    Google Scholar

  • 43.

    Azimzade, Y., Saberi, A. A. M. Role for the interplay between external and internal conditions in the invasive behavior tumors. Sci. Rep. 8, 5968 (2018).

    PubMed
    PubMed Central
    ADS

    Google Scholar

  • 44.

    Ben-Jacob, E. et.Generic modeling of cooperative patterns in bacterial colonies. Nature 368, 46 (1994).

    CAS
    PubMed
    ADS

    Google Scholar

  • 45.

    Family, F. & Vicsek, T. Dynamics of fractal surface (World Scientific, Singapore, 1991).

    MATH

    Google Scholar

  • 46.

    Vicsek, T. Fractal growth phenomena (World scientific, Singapore, 1992).

    MATH

    Google Scholar

  • 47.

    Swanson, K. R., Bridge, C., Murray, J. & Alvord, E. C. Jr. Calculating the growth and invasion of gliomas in real brain tumors using mathematical modeling J. Neurol. Sci. 216, 110 (2003).

    PubMed

    Google Scholar

  • 48.

    Metzcar J., Wang Y. and Heiland R. & Macklin P. Review of cell-based computational modelling in cancer biology. JCO Clin. Cancer Inform. 2, 113 (2019).


    Google Scholar

  • 49.

    Azimzade, Y., Saberi, A. A. R.A. Gatenby, R.A. Superlinear growth shows the allee effect in cancers. Phys. Rev. Rev. 103, 042405 (2021).

    CAS
    PubMed
    ADS

    Google Scholar

  • 50.

    Anderson, A. R. Weaver A. M., Cummings P. T. & Quaranta V. Tumor morphology, phenotypic and microenvironmental pressure driven phenotypic evolution. Cell 127, 905915 (2006).

    CAS
    PubMed

    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.