WWF. Living Planet Report 2020Bending biodiversity loss’s curve Gland, Switzerland: WWF, 2020.
Collen, B. et al.Global patterns of freshwater species diversity and threat, as well as endemism. Glob. Ecol. Biogeogr. 23(1), 4051 (2014).
Hoekstra, A. Y. & Mekonnen M. M. The water footprint for humanity. Proc. Natl. Acad. Sci. 109(9), 32323237 (2012).
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people face severe water scarcity. Sci. Adv. 2(2), e1500323 (2016).
Virkki, V. et al.Environmental flow envelopes – Quantifying global, ecosystemthreatening streamflow alterations. Hydrol. Earth Syst. Sci. Discuss. 2021, 131 (2021).
Tickner, D. et al.An emergency recovery plan to change the global curve of freshwater biodiversity loss Bioscience 70(4), 330342 (2020).
Falkenmark, M., Wang-Erlandsson, L. & Rockstrm, J. Understanding water resilience in Anthropocene. J. Hydrol. X 2, 100009 (2019).
Vanham, D. et al.For monitoring progress towards SDG target 6,4: An evaluation indicator 6.4.2 Levels of water stress. Sci. Total Environ. 613614, 218232 (2018).
Molle, F. Wester and Hirsch, P. River basin Closure: Processes, Implications and Responses Agric. Water Management 97(4), 569577 (2010).
Arthington, A. H. et al.The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Front. Environ. Sci. 6, 45 (2018).
Richter, B. D. Davis M. M. Apse C. and Konrad C. A presumptive benchmark for environmental flow protection River Res. Appl. 28(8), 13121321 (2012).
Richter, B. D. et al.Beef production has led to water scarcity, fish destruction, and even water insecurity. Nat. Sustain. 3(4), 319328 (2020).
A. Y. Hoekstra, M. M. Chapagain A. K., Mathews R. E. & Richter B. D. Global monthly Water Scarcity: Blue water footprints versus Blue water availability PLoS ONE 7(2), e32688 (2012).
Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint is linked to international trade and national consumption is not sustainable. Nat. Nat. 1(12), 792800 (2020).
Hogeboom Rick, J., de Bruin, D., Schyns, J. F., Krol Maarten, S. & Hoekstra, A. Y. The world’s river basins are mapped to determine the footprints of humans. Earths Future 8(2), e2019EF001363 (2020).
Rosa, L. et al.The closing of the yield gap while ensuring water sustainability. Environ. Res. Lett. 13(10), 104002 (2018).
Vanham, D. Mekonnen M. M. & Hoekstra A. Y. Treenuts & groundnuts in EAT-Lancet: Concerns about sustainable water use Global Food Secur. 24, 100357 (2020).
Vanham, D. et al.Global modelling study to determine the ratio of water stress to water resources available for the environment. Lancet Planet. Health 5(11), e766e774 (2021).
Vanham, D., Medarac, H., Schyns, J. F., Hogeboom, R. J. & Magagna D. The European Union’s energy sector’s consumptive water footprint. Environ. Res. Lett. 14(10), 104016 (2019).
ADS
CAS
Google Scholar
Acreman, M. et al. Developing environmental standards for abstractions from UK rivers to implement the EU Water Framework Directive / Dveloppement de standards environnementaux sur les prlvements deau en rivire au Royaume Uni pour la mise en uvre de la directive cadre sur leau de lUnion Europenne. Hydrol. Sci. J. 53(6), 11051120 (2008).
CAS
Google Scholar
Longobardi, A. P. Villani, P. Regional assessment of environmental flows in the Mediterranean environment. J. Hydrol. Reg. Stud. 32, 100764 (2020).
Olsen, M. et al.Evaluation of a typical hydrological modeling in relation to environmental flows. J. Hydrol. 507, 5262 (2013).
Vanham D., Fleischhacker E., & Rauch W. Impact of alpine snowmaking on the management of alpine water resources under present and future climate change conditions. Water Sci. Technol. 59(9), 17931801 (2009).
CAS
PubMed
Google Scholar
Vanham, D. Fleischhacker E. & Rauch,W. Effect of an extreme hot and dry summer on water supply security within an alpine area Water Sci. Technol. 59(3), 469477 (2009).
CAS
PubMed
Google Scholar
Verma R. K., Murthy S., Verma S., & Mishra S. K. Design flow duration charts for environmental flows estimation in Damodar River Basin. India. Appl. Water Sci. 7(3), 12831293 (2017).
Van Der Knijff, J. M., Younis, J. & De Roo A. P. J. LISFLOOD – A GIS-based distributed model to simulate flood and water balance in river basins Int. J. Geogr. Inf. Sci. 24(2), 189212 (2010).
Falkenmark, M., Lundqvist, J. & Widstrand C. Macro-scale water scarcity calls for micro-scale solutions. Nat. Res. Forum 13(4), 258267 (1989).
CAS
Google Scholar
UNEP-DHI, UNEP. Transboundary River Basins Status and Trends. (United Nations Environment Programme (UNEP), Nairobi, 2016).
F. R. Rijsberman. Water scarcity: Factual or fiction? Agric. Water Management 80(13), 522 (2006).
FAO. The State of Food and Agriculture 2020. Agriculture’s water challenges. (FAO, Rome, 2020).
Wang, D., Hubacek, K., Shan, Y., Gerbens-Leenes, W. & Liu, J. A review on water footprint accounting and water stress. Water 13(2), 201 (2021).
CAS
Google Scholar
FAO. FAO. http://www.fao.org/nr/water/aquastat/water_use/index.stm. 2020.
Gleick P. H. Transitions towards freshwater sustainability Proc. Natl. Acad. Sci. 115(36), 88638871 (2018).
Gleick, P. H. & Palaniappan M. Peak water limits for freshwater withdrawal and usage. Proc. Natl. Acad. Sci. 107(25), 1115511162 (2010).
Vanham, D., Weingartner R. & Rauch W. The Cauvery River Basin in Southern India: Major challenges and possible solutions for the 21st Century. Water Sci. Technol. 64(1), 122131 (2011).
CAS
PubMed
Google Scholar
Sadoff, C. W.; Borgomeo E. & Uhlenbrook S. Rethinking Water for SDG 6. Nat. Sustain. 3(5), 346347 (2020).
Vanham, D. & Mekonnen M. M. The scarcity weighted water footprint provides unreliable water sustainability scoring. Sci. Total Environ. 756, 143992 (2021).
Vanham, D. & Leip, A. Sustainable food system policies must address environmental pressures. Sci. Total Environ. 730, 139151 (2020).
Unver, O., Bhaduri, A. & Hoogeveen J. Water-use efficiency improvements and productivity improvements towards a sustainable path for meeting future water demands. Water Secur. 1, 2127 (2017).
Lankford, B. et al.A scale-based framework for understanding the promises, pitfalls and paradoxes associated with irrigation efficiency in order to meet major water problems. Global Environ. Change 65, 102182 (2020).
Grafton, R. Q. et al.The paradox of irrigation efficiency. Science 361(6404), 748750 (2018).
ADS
CAS
PubMed
Google Scholar
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574(7776), 9094 (2019).
Springmann, M. et al.There are several options for keeping the environment safe and healthy. Nature 562(7728), 519525 (2018).
ADS
CAS
PubMed
Google Scholar
Vanham, D.; Comero S.; Gawlik B. M. & Bidoglio G. The water footprints of different diets within European subnational geographical entities. Nat. Sustain. 1(9), 518525 (2018).
Vanham, D., Bouraoui, F., Leip, A., Grizzetti, B. & Bidoglio G. EU Consumer Food Waste: Loss of water and nitrogen resources Environ. Res. Lett. 10(8), 084008 (2015).
Vanham, D. Water resources to sustain healthy diets: State of the art and outlook. Water 12, 3224 (2020).
Vanham, D., Guenther, S., Ros-Bar, M. & Bach-Faig, A. Which Mediterranean diet has the lowest water footprint? Resour. Conserv. Recycl. 171, 105631 (2021).
Grill, G. et al.The mapping of the world’s rivers. Nature 569(7755), 215221 (2019).
ADS
CAS
Google Scholar
Belletti, B. et al.Europe’s rivers are divided by more than a million barriers Nature 588(7838), 436441 (2020).
ADS
CAS
PubMed
Google Scholar
Cantonati, M. et al.Characteristics, main effects, and stewardship in natural and artificial freshwater environments: The consequences for biodiversity conservation. Water 12(1), 260 (2020).
European Commission. EU Biodiversity Strategy 2030 Bringing nature back in our lives. COM/2020/380 final – Communication from the Commission (2020).
Albert, J. S. et al.Scientists warn humanity about the freshwater biodiversity crisis. Ambio 50(1), 8594 (2021).
Birk, S. et al.Multiple stressors have different impacts on freshwater biota at different spatial scales and ecosystems. Nat. Ecol. Evolut. 4(8), 10601068 (2020).
Reid, A. J. et al.Emerging threats and persistent conservation challenges facing freshwater biodiversity. Biol. Rev. 94(3), 849873 (2019).
Knouft J. H., & Ficklin D. L. The potential effects of climate change on biodiversity in flowing water systems Annu. Rev. Ecol. Evol. Syst. 48(1), 111133 (2017).
Allan, J. D. et al.Overfishing in Inland Waters Bioscience 55(12), 10411051 (2005).
Magliozzi, C. et al.Assessment of invasive aliens in European catchments: Distribution and Impacts Sci. Total Environ. 732, 138677 (2020).
ADS
CAS
PubMed
Google Scholar
Vanham, D. et al.The Environmental Footprint Family is designed to address sustainability at all levels, from local to global, and to deliver the SDGs. Sci. Total Environ. 693, 133642 (2019).
Vanham, D. Does the water footprint concept provide relevant information to address the waterfoodenergyecosystem nexus?. Ecosyst. Serv. 17, 298307 (2016).
Uhlenbrook, S. Yu, W. Schmitter, P. & Smith D. M. Optimising water we eat-rethinking policies to increase productive and sustainable water use in agri-food system across scales. The Lancet Planetary Health 6(1), e59e65 (2022).
Alfieri, L. et al.Global projections for river flood risk in a warmer planet Earths Future 5(2), 171182 (2017).
Alfieri, L. et al.A global streamflow analysis for 1980-2018. J. Hydrol. J. Hydrol. 6, 100049 (2020).
Farinosi, F. et al.A new approach to the assessment and mitigation of hydro-political risks: A spatially specific, data driven indicator of hydropolitical concerns. Glob. Environ. Chang. 52, 286313 (2018).
CAS
Google Scholar
Chow, V. T., Maidment, D. R. & Mays, L. W. Hydrology applied (McGraw-Hill, 1988).
Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. V4 SRTM data V4 – Hole-filled seamless SRTM. (International Centre for Tropical Agriculture, 2008).
Wu, H. et al.A new global database of river networks for macroscale hydrologic modeling. Water Resour. Res. 48(9), W09701 (2012).
Hengl, T. et al.SoilGrids1kmGlobal soil data based upon automated mapping. PLoS ONE 9(8), e105992 (2014).
Bontemps, S., Defourny, P., Van Bogaert, E., Arino, O., Kalogirou, V., Perez, J. R. GLOBCOVER 2009 – Product description and validation Report. (UCLouvain & ESA, 2011).
Baret, F. et al.GEOV1 – LAI and FAPAR climate variables and FCOVER global series capitalizing over current products. Part 1: Principles of production and development. Remote Sensing Environ. 137, 299309 (2013).
Yamazaki, D. et al.Development of the global width database to support large rivers. Water Resour. Res. 50(4), 34673480 (2014).
Hersbach, H., de Rosnay, P., Bell, B. et al.Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP (2018).
Supit, I., Hooijer, A. A., & Van Diepen, C. A. System description for the WOFOST 6.0 crop sim model implemented in CGMS, vol. 1: Theory and Algorithms(Joint Research Centre of the Commission of the European Communities, 1994).
Haddeland, I. et al.Multimodel estimation of the global terrestrial water equilibrium: Setup and initial results J. Hydrometeorol. 12(5), 869884 (2011).
UN. UN Population Databases. 2020. https://www.un.org/en/development/desa/population/publications/database/index.asp.
Vanham, D. Gawlik, B. M. & Bidoglio G. Cities as hotspots for indirect water consumption: A case study of Hong Kong. J. Hydrol. 573, 10751086 (2019).
CAS
Google Scholar
Gleick P. H. Basic water needs for human activities: Meeting basic requirements Water Int. 21(2), 8392 (1996).