Now Reading
CatCost CatCost Early-stage Evaluation of CatCost’s CatCost Manufacturing Cost and Environmental Impact

CatCost CatCost Early-stage Evaluation of CatCost’s CatCost Manufacturing Cost and Environmental Impact

  • Technology Roadmap: Energy & GHG Reductions in Chemical Industry via Catalytic Processes(International Energy Agency, 2013,

  • Bligaard, T. et al. Achieving benchmarking in catalysis science: Best practices, challenges, opportunities. ACS Catal. 6, 25902602 (2016).

    CAS
    Article

    Google Scholar

  • Scott, S. L. A matter both of life and death. ACS Catal. 8, 85978599 (2018).

    CAS
    Article

    Google Scholar

  • Murzin, D. Engineering Catalysis (De Gruyter, 2013).

  • Armor, J.N. Do you really need a better catalyst? Appl. Catal. A Gen. 282, 14 (2005).

    CAS
    Article

    Google Scholar

  • Mitchell, S., Michels, N.-L. & Perez-Ramirez, J. The science of catalyst scale-up: from powder to technical bodies: Chem. Soc. Rev. 42, 60946112 (2013).

    CAS
    PubMed
    Article

    Google Scholar

  • Boren, M., Chan, V. & Musso, C. The Path to Improved Returns on Materials Commercialization (McKInsey & Co., 2012).

  • Schaidle, J. A. et al. in Catalysis Vol. 29 (eds Spivey, J. & Han (Y.-F.). 213281 (Royal Society of Chemistry 2017).

  • Dutta, A. et al. Process Design and Economics for Conversion of Lignocellulosic Biomass To Hydrocarbon Fuels: Thermochemical Pathways with In Situ or Ex Situ Upgrading Of Fast Pyrolysis Vapors.Report no. NREL/TP-5100-62455 National Renewable Energy Laboratory, 2015.

  • Dutta, A., Schaidle, J. A., Humbird, D., Baddour, F. G. & Sahir, A. Conceptual process design and technoeconomic assessment of ex-sit catalytic fastpyrolysis of biomass: A fixed bed reactor implementation scenario for future viability. Top. Catal. 59, 218 (2016).

    CAS
    Article

    Google Scholar

  • Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic biomass to Hydrocarbon Fuels: 2018 Technology Status and Future Research. Report no. NREL/TP-5100-71954 National Renewable Energy Laboratory, 2018.

  • Dutta, A. et al. Ex Situ Catalytic Rapid Pyrolysis of Lignocellulosic biomass to Hydrocarbon fuels: 2019 State of Technology and Future Research. Report no. NREL/TP-5100-76269 National Renewable Energy Laboratory 2020

  • Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis Lignocellulosic biomass to Hydrocarbon Fuels: 2020 Technology State. Report no. NREL/TP-5100-80291 National Renewable Energy Laboratory (2021).

  • Tan, E. C. D. et al. Conceptual process design and economics to produce high-octane gasoline blendstock through indirect liquefaction (using methanol/dimethylether intermediates). Biofuel. Bioprod. Biorefin. 10, 1735 (2016).

    CAS
    Article

    Google Scholar

  • Snowden-Swan, L. J., Spies, K. A., Lee, G. J. & Zhu, Y. Analysis of greenhouse gas emissions from catalysts for hydrotreating fast pyrolysis biooil. Biomass Bioenergy 86, 136145 (2016).

    CAS
    Article

    Google Scholar

  • Kazi, F. K., Patel, A. D., Serrano-Ruiz, J. C., Dumesic, J. A. & Anex, R. P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem. Eng. J. 169, 329338 (2011).

    CAS
    Article

    Google Scholar

  • Dutta, A. et al. Process Design and Economics for Conversion Of Lignocellulosic Biomass into Ethanol. Thermochemical Pathway through Indirect Gasification and Mixed Alcohol Synthesis.Report no. NREL/TP-5100-551400 National Renewable Energy Laboratory, 2011.

  • Tan, E. C. D. et al. Process Design and Economics for Conversion of Lignocellulosic Biomass into Hydrocarbons via Indirect Liquefaction.. Report no. NREL/TP-5100-62402 National Renewable Energy Laboratory, 2015.

  • Anderson, J. Determining Manufacturing Prices. Chem. Eng. Prog. 2731 (2009).

  • Anderson, J. Communicating the Cost of Product and Process Development. Chem. Eng. Prog. 4651 (2010).

  • Anderson, J. & Fennell, A. Calculate financial indicators to guide investment decisions. Chem. Eng. Prog. 3440 (2013).

  • Peters, M. S. & Timmerhaus, K. D. Chemical Engineers: Economics and Plant Design 5th edn (McGraw-Hill, 2003).

  • Ulrich, G. D. & Vasudevan, P. T. Chemical Engineering Process Design and Economics2nd edn (Process 2004).

  • Towler, G. & Sinnott, R. K. Principles and Practice in Chemical Engineering Design. Economics of Plant and Process Design. 2nd edn (Butterworth-Heinemann, 2013).

  • Green, D. W. & Perry, R. H. Perrys Chemical Engineers Handbook 8th edn (McGraw-Hill, 2008).

  • Garrett, D. E. Chemical Engineering Economics (Van Nostrand-Reinhold, 1989).

  • Vajglov, Z. et al. Synthesis and physicochemical analysis of shaped catalysts of and Yzeolites for the cyclization of citronellal. Ind. Eng. Chem. Res. 58, 1808418096 (2019).

    Article

    Google Scholar

  • Devyatkov, S., Kuzichkin, N. V. & Murzin, D. Y. A comprehensive understanding of catalyst shaping through extrusion. Chim. Oggi 33, 5764 (2015).


    Google Scholar

  • Stiles, A. B. Catalyst Manufacture (Marcel Dekker, 1983).

  • Bankmann, M., Brand, R., Engler, B. H. & Ohmer, J. Forming high surface area TiO2To provide catalyst support. Catal. Today 14, 225242 (1992).

    CAS
    Article

    Google Scholar

  • P. R. Tufvesson, J. Lima­Ramos. M. Nordblad. M. Woodley. Guidelines and cost analysis of catalyst production in biocatalytic process. Org. Process Res. Dev. 15, 266274 (2011).

    CAS
    Article

    Google Scholar

  • Menten, F.; Chze, B.; Patouillard, L. and Bouvart, F. An analysis of LCA greenhouse gas emissions results in advanced biofuels: The use of meta-regression analysis Renew. Sustain. Energy Rev. 26, 108134 (2013).

    CAS
    Article

    Google Scholar

  • Greig, A. L. & Carey S. International Molybdenum Association’s (IMOA) life-cycle assessment program and perspectives on LCA harmonization. Int. J. Assess the Life Cycle. 21, 15541558 (2015).

    Article

    Google Scholar

  • Sick, V. et al. The need for and the path to harmonized technology economic assessment and life cycle assessment for carbon dioxide capture, and utilization. Energy Technol. https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901034 (2019).

  • Trippe, F. Frhling M., Schultmann F., Stahl R. & Henrich E. Techno-economic analysis and fast pyrolysis as an intermediate step in biomass-to-liquid-fuel production. Waste Biomass Valoriz. 1, 415430 (2010).

    Article

    Google Scholar

  • Hu, W. Dang, Q. Rover, M. Brown, R. C. and Wright, M.M. Comparative technoeconomic analysis of advanced biofuels and biochemicals via fast pyrolysis. Biofuels 7, 5767 (2015).

    Article

    Google Scholar

  • Meyer, P. A. et al. Field-to fuel performance testing of lignocellulosic feedstocks to fast pyrolysis/upgrading: Techno-economic analysis and greenhouse gas cycle analysis. Energy Fuels 30, 94279439 (2016).

    CAS
    Article

    Google Scholar

  • Talmadge, M. et al. Techno-economic analysis of co-processing fast-pyrolysis liquid with vacuum gasolineoil in FCC units to produce second-generation biofuels. Fuel 293, 119960 (2021).

    CAS
    Article

    Google Scholar

  • CatCost v.1.1.0; National Renewable Energy Laboratory 2021 https://catcost.chemcatbio.org

  • Qi, W., Sathre, R., Morrow, W. R. & Shehabi, A. Trends in Unit Price Scaling for Chemical Products. Report no. LBNL-189844 (Lawrence Berkeley National Laboratory, 2015).

  • Baddour F. G.; Snowden-Swan L.; Super, J. D. and Van Allsburg K. M. Precommercial heterogeneous catalyst prices: A simple step-based method Org. Process Res. Dev. 22, 15991605 (2018).

    CAS
    Article

    Google Scholar

  • World Catalysts (Freedonia Group, 2014).

  • Guthrie, K. M. Techniques and Data for Preliminary Capital Cost Estimation. Chem. Eng. (New York) 114142 (1969).

  • Guthrie, K. M. Process Plant Evaluation, Control, and Estimation (Craftsman, 1974).

  • Cran, J. Cran, J. Chem. Eng. (New York) 6579 (1981).

  • Desai, M. B. Preliminary cost estimation for process plants. Chem. Eng. (New York) 6570 (1981).

  • Brown, T. R. Estimating Product Costs. Chem. Eng. (New York) 8689 (2000).

  • Ward, T. J. Economic Evaluation. In Kirk-Othmer Encyclopedia of Chemical Technology Online (Wiley, 2001). https://onlinelibrary.wiley.com/doi/book/10.1002/0471238961

  • Seider, W. D. et al. Synthesis of Product and Process Design Principles, Analyse and Evaluation 4th edn (Wiley, 2016).

  • Super, J.D. The precious metal loop costs from an operating company perspective. Top. Catal. 53, 11381141 (2010).

    CAS
    Article

    Google Scholar

  • Feng, Y. & Rangaiah, G. P. Evaluating Capital Cost Estimation Programs. Chem. Eng. (New York) 2229 (2011).

  • Griffin, M. B. et al. By rethinking catalyst selection, reactor configuration, we can move towards cost-competitive biomass fuels using catalytic fastpyrolysis. Energy Environment. Sci. 11, 29042918 (2018).

    CAS
    Article

    Google Scholar

  • Ruddy, D. A. et al. Recent advances in heterogeneous pyrolysis catalysts for biooil upgrading via ex-sit catalytic fastpyrolysis: The study of model compounds is a catalyst development process. Green Chem. 16, 454490 (2014).

    CAS
    Article

    Google Scholar

  • Liu, C., Wang, H., Karim, A. M., Sun, J. & Wang, Y. Catalytic fastpyrolysis for lignocellulosic biomass. Chem. Soc. Rev. 43, 75947623 (2014).

    See Also

    CAS
    PubMed
    Article

    Google Scholar

  • Iisa, K., French, R. J., Orton, K. A., Dutta, A. & Schaidle, J. A. Ex situ catalytic fast Pyrolysis and Hydrotreating are used to produce low-oxygen biooil. Fuel 207, 413422 (2017).

    CAS
    Article

    Google Scholar

  • Zacher, A. H. et al. Technological advancements in hydroprocessing bio-oils Biomass Bioenergy 125, 151168 (2019).

    CAS
    Article

    Google Scholar

  • Iida, T. et al. The encapsulation of molybdenum-carbid nanoclusters within zeolite micropores allows for synergistic bifunctional catalysis to anisole hydrodeoxygenation. ACS Catal. 7, 81478151 (2017).

    CAS
    Article

    Google Scholar

  • Chen, C.-J. Chen, C.-J.2CO modification of C2H2O, and OH2: The effects of oxygen content on selectivity and rates of m-cresol hydradeoxygenation ACS Catal. 7, 11131122 (2017).

    CAS
    Article

    Google Scholar

  • Pgm Market Report(Johnson Matthey PLC 2019).

  • Vaughan D. E. W. Fluid Catalytic Cracking – Science and Technology (eds Magee, J. S. & Mitchell, M. M.) 83104 (Elsevier, 1993).

  • Schmidt, M. Sankey diagram in energy management and material flow management. J. Ind. Ecol. 12, 8294 (2008).

    Article

    Google Scholar

  • Bare, J. C.; Norris G. A.; Pennington D. W.; McKone T. TRACI: The tool for reducing and assessing chemical and other environmental effects. J. Ind. Ecol. 6, 4978 (2003).

    Article

    Google Scholar

  • Bare, J. TRACI 2.0 is the tool for reducing and assessing chemical and other environmental effects 2.0. Clean Technol. Environ. Policy 13, 687696 (2011).

    CAS
    Article

    Google Scholar

  • TRACI v.2.1 (Environmental Protection Agency, 2012); https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci

  • Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J. Apul, D. Environmental impact of photovoltaic solar cell made with single walled carbon-nanotubes. Environ. Sci. Technol. 51, 47224732 (2017).

    CAS
    PubMed
    Article

    Google Scholar

  • Ambrose, H. & Kendall, A. Understanding the future lithium: Part 2: temporally and spatially resolved lifecycle assessment modeling. J. Ind. Ecol. 24, 90100 (2019).

    Article

    Google Scholar

  • Ryberg, M., Vieira, M. D. M., Zgola, M., Bare, J. & Rosenbaum R. K. Updated US-Canada normalization factors for TRACI 2.1. Clean Technol. Environ. Policy 16, 329339 (2013).

    Article

    Google Scholar

  • T. L. Saaty. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 48, 926 (1990).

    Article

    Google Scholar

  • M. Schreier & J. R. Regalbuto. A fundamental study on Pt tetraammine impregnation of silica 1. The electrostatic nature and adsorption of platinum. J. Catal. 225, 190202 (2004).

    CAS
    Article

    Google Scholar

  • Miller, J. T., Schreier, M., Kropf, A. J. Regalbuto, J. R. & Miller, J. T. Schreier M., Kropf A. J. The effects of loading and calcination temperatures on particle size (reduced). J. Catal. 225, 203212 (2004).

    CAS
    Article

    Google Scholar

  • Aspen Plus (Aspen Technology, Inc., 2017).

  • Lang, H. J. Cost Relationships in Preliminary cost Estimation. Chem. Eng. (New York) 117121 (1947).

  • Lang, H.J. Simplified Approach to Preliminary Estimates. Chem. Eng. (New York) 112113 (1948).

  • SimaPro v.8.5.2.0 – Product Ecology Consultants, 2016,

  • Average annual gasoline expenses per capita for each state ranged between $400 and $1,400 (U.S. Energy Information Administration, 2021); https://www.eia.gov/todayinenergy/detail.php?id=40893

  • Paasikallio, V. et al. A four-day catalytic fastpyrolysis production run was conducted to determine product quality and deactivate the catalyst. Green Chem. 16, 35493559 (2014).

    CAS
    Article

    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.