Now Reading
Earths sediment cycle during the Anthropocene
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Earths sediment cycle during the Anthropocene

  • 1.

    Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161164 (2005).


    Google Scholar

  • 2.

    Syvitski, J. P. M., Vrsmarty, C., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376380 (2005).


    Google Scholar

  • 3.

    Meade, R. H. Movement and storage of sediment in river systems. In Physical and Chemical Weathering in Geochemical Cycles (eds Lerman, A. & Meybeck, M.) 165179, (Springer, 1988).

  • 4.

    Nicholas, A. P., Ashworth, P. J., Kirkby, M. J., Macklin, M. G. & Murray, T. Sediment slugs: large-scale fluctuations in fluvial sediment transport rates and storage volumes. Prog. Phys. Geography Earth Environ. 19, 500519 (1995).


    Google Scholar

  • 5.

    Trimble, S. W. The fallacy of stream equilibrium in contemporary denudation studies. Am. J. Sci. 277, 876887 (1977).


    Google Scholar

  • 6.

    Vrsmarty, C. J., Fekete, B. M., Meybeck, M. & Lammers, R. Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Glob. Biogeochem. Cycles 14, 599621 (2000).


    Google Scholar

  • 7.

    Syvitski, J. et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 1, 32 (2020).


    Google Scholar

  • 8.

    Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 383, 196203 (2015).


    Google Scholar

  • 9.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).


    Google Scholar

  • 10.

    Hay, W. H. PleistoceneHolocene fluxes are not the Earths norm. In Global Sedimentary Geofluxes (ed. Hay, W. H.) 1527 (National Academy of Sciences Press, 1994).

  • 11.

    Walling, D. E. & Webb, B. W. Erosion and sediment yield: a global overview. In Erosion and Sediment Yield: Global and Regional Perspectives 319 (IAHS, 1996).

  • 12.

    Syvitski, J. P. M. Sediment fluxes and rates of sedimentation. In Encyclopedia of Sediments and Sedimentary Rocks (ed. Middleton, G. V.) 600606 (Kluwer Academic, Netherlands, 2003).

  • 13.

    Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12, 213235 (1996).


    Google Scholar

  • 14.

    Mtivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280318 (1999).


    Google Scholar

  • 15.

    Latrubesse, E. M. & Restrepo, J. D. Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology 216, 225233 (2014).


    Google Scholar

  • 16.

    Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of sediment to the coastal ocean. J. Geol. 115, 119 (2007).


    Google Scholar

  • 17.

    Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 369, 957975 (2011).


    Google Scholar

  • 18.

    Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525544 (1992).


    Google Scholar

  • 19.

    Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Glob. Biogeochem. Cycles 16, 45-145-14 (2002).


    Google Scholar

  • 20.

    Gordeev, V. V. Fluvial sediment flux to the Arctic Ocean. Geomorphology 80, 94104 (2006).


    Google Scholar

  • 21.

    Syvitski, J. P., Kettner, A. J., Overeem, I., Brakenridge, G. R. & Cohen, S. Latitudinal controls on siliciclastic sediment production and transport. In Latitudinal Controls on Stratigraphic Models and Sedimentary Concepts 1428 (eds Fraticelli, C. M., Martinius, A. W., Markwick, P. & Suter, J. R.) (Geological Society Special Publication, 2019).

  • 22.

    Dadson, S. J. et al. Earthquake triggered increase in sediment delivery from an active mountain belt. Geology 32, 733736 (2004).


    Google Scholar

  • 23.

    Hovius, N. et al. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 34, 347355 (2011).


    Google Scholar

  • 24.

    Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859863 (2017).


    Google Scholar

  • 25.

    Steinberger, B. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness. Geophys. J. Int. 205, 604621 (2016).


    Google Scholar

  • 26.

    Stallard, R. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231257 (1998).


    Google Scholar

  • 27.

    Syvitski, J. P. M., Overeem, I., Brakenridge, G. R. & Hannon, M. D. Floods, floodplains, delta plains a satellite imaging approach. Sediment. Geol. 267/268, 114 (2012).


    Google Scholar

  • 28.

    Kettner, A. J., Restrepo, J. D. & Syvitski, J. P. M. A spatial simulation experiment to replicate the fluvial sediment fluxes within the Magdalena River Basin, Colombia. J. Geol. 118, 363379 (2010).


    Google Scholar

  • 29.

    Chen, Z., Wang, Z., Finlayson, B., Chen, J. & Yin, D. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China. Geology 38, 10431046 (2010).


    Google Scholar

  • 30.

    Wilkinson, B. H. & McElroy, B. J. The impact of humans on continental erosion and sedimentation. Geol. Soc. Am. Bull. 119, 140156 (2007).


    Google Scholar

  • 31.

    Beach, T. The fate of eroded soil: sediment sinks and sediment budgets of agrarian landscapes in southern Minnesota, 18511988. Ann. Assoc. Am. Geogr. 84, 528 (1994).


    Google Scholar

  • 32.

    Restrepo, J. D., Kettner, A. J. & Syvitski, J. P. Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 10, 1328 (2015).


    Google Scholar

  • 33.

    Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697 (2001).


    Google Scholar

  • 34.

    Ibez, C. et al. Basin-scale land use impacts on world deltas: human vs natural forcings. Glob. Planet. Change 173, 2432 (2019).


    Google Scholar

  • 35.

    Curtis, W. F., Culbertson, K. & Chase, E. B. Fluvial-sediment discharge to the oceans from the conterminous United States. US Geol. Surv. Circ. 670, 117 (1973).


    Google Scholar

  • 36.

    Chen, Z., Syvitski, J. P. M., Gao, S., Overeem, I. & Kettner, A. J. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682698 (2012).


    Google Scholar

  • 37.

    Zhou, L. Y. et al. Coastal erosion as a major sediment supplier to continental shelves: example from the abandoned Old Huanghe (Yellow River) delta. Continental Shelf Res. 82, 4359 (2014).


    Google Scholar

  • 38.

    Zhou, L. et al. Sediment budget of the Yellow River delta during 19592012, estimated from morphological changes and accumulation rates. Mar. Geol. 430, 106363 (2020).


    Google Scholar

  • 39.

    Ericson, J. P., Vrsmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise in deltas: sources of change and human-dimension implications. Glob. Planet. Change 50, 6382 (2006).


    Google Scholar

  • 40.

    Walsh, J. P. & Nittrouer, C. A. Understanding fine-grained river-sediment dispersal on continental margins. Mar. Geol. 263, 3445 (2009).


    Google Scholar

  • 41.

    Bernhardt, A. & Schwanghart, W. Where and why do submarine canyons remain connected to the shore during sealevel rise? Insights from global topographic analysis and Bayesian regression. Geophys. Res. Lett. 48, e2020GL092234 (2021).


    Google Scholar

  • 42.

    Morehead, M. D., Syvitski, J. P. M., Hutton, E. W. H. & Peckham, S. D. Modelling the temporal variability in the flux of sediment in ungauged river basins. Glob. Planet. Change 39, 95110 (2003).


    Google Scholar

  • 43.

    Meybeck, M., Laroche, L., Darr, H. H. & Syvitski, J. P. M. Global variability of daily total suspended solids and their fluxes in rivers. Glob. Planet. Change 39, 6593 (2003).


    Google Scholar

  • 44.

    Paszkowski, A., Goodbred, S., Borgomeo, E., Shah Alam Khan, M. & Hall, J. W. Geomorphic change in the GangesBrahmaputraMeghna delta. Nat. Rev. Earth Environ. 2, 763780 https://www.nature.com/articles/s43017-021-00213-4 (2021).


    Google Scholar

  • 45.

    Overeem, I. & Syvitski, J. P. M. Shifting discharge peaks in Arctic rivers 19772007. Geogr. Ann. A 92, 285296 (2010).


    Google Scholar

  • 46.

    Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 57155737 (2010).


    Google Scholar

  • 47.

    Syvitski, J. P. M. et al. Dynamics of the coastal zone. In Coastal Fluxes in the Anthropocene 3994 (eds Crossland, C. J., Kremer, H. H., Lindeboom, H. J., Marshall Crossland, J. I. & Le Tissier, M. D. A.) (Springer, 2005).

  • 48.

    Syvitski, J. P. M., Morehead, M. D., Bahr, D. & Mulder, T. Estimating fluvial sediment transport: the rating parameters. Wat. Resour. Res. 36, 27472760 (2000).


    Google Scholar

  • 49.

    Nkaya, G. D. M., Orange, D., Bayonne Padou, S. M., Datok, P. & Laraque, A. Temporal variability of sediments, dissolved solids and dissolved organic matter fluxes in the Congo river at Brazzaville/Kinshasa. Geosciences 10, 341 (2020).


    Google Scholar

  • 50.

    Huang, T.-H., Fu, Y.-H., Pan, P.-Y. & Chen, C.-T. A. Fluvial carbon fluxes in tropical rivers. Curr. Opin. Environ. Sustain. 4, 162169 (2012).


    Google Scholar

  • 51.

    Lyons, W. B., Nezat, C. A., Carey, A. E. & Hicks, D. M. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 443446 (2002).


    Google Scholar

  • 52.

    Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W. & Harrison, J. Estimation of global river transport of sediments and associated particulate C, N, and P. Glob. Biogeochem. Cycles 19, GB4S05 (2005).


    Google Scholar

  • 53.

    Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the landocean interface. Org. Geochem. 115, 138155 (2018).


    Google Scholar

  • 54.

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a reassessment. Glob. Biogeochem.Cycles 19, GB4011 (2005).


    Google Scholar

  • 55.

    Qiao, J. et al. Runoff-driven export of terrigenous particulate organic matter from a small mountainous river: sources, fluxes and comparisons among different rivers. Biogeochemistry 147, 7186 (2020).


    Google Scholar

  • 56.

    Usman, M. O. et al. Reconciling drainage and receiving basin signatures of the Godavari River system. Biogeosciences 15, 33573375 (2018).


    Google Scholar

  • 57.

    Pradhan, U. K. et al. Multi-proxy evidence for compositional change of organic matter in the largest tropical (peninsula) river basin of India. J. Hydrol. 519, 9991009 (2014).


    Google Scholar

  • 58.

    Gruca-Rokosz, R. Quantitative fluxes of the greenhouse gases CH4 and CO2 from the surfaces of selected Polish reservoirs. Atmosphere 11, 286 (2020).


    Google Scholar

  • 59.

    Zalasiewicz, J. et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13, 417 (2016).


    Google Scholar

  • 60.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).


    Google Scholar

  • 61.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768771 (2015).


    Google Scholar

  • 62.

    Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).


    Google Scholar

  • 63.

    Probst, J. L. & Tardy, Y. Global runoff fluctuations during the last 80 years in relation to world temperature change. Am. J. Sci. 289, 267285 (1989).


    Google Scholar

  • 64.

    Knox, J. C. Large increase in flood magnitude in response to modest changes in climate. Nature 361, 430432 (1993).


    Google Scholar

  • 65.

    Milliman, J. D. & Kao, S. J. Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese rivers. J. Geol. 113, 503516 (2005).


    Google Scholar

  • 66.

    Wang, H. et al. Recent changes of sediment flux to the western Pacific Ocean from major rivers in east and southeast Asia. Earth Sci. Rev. 108, 80100 (2011).


    Google Scholar

  • 67.

    Depetris, P. J., Kempe, S., Latif, M. & Mook, W. G. ENSO controlled flooding in the Parana River (1904-1991). Naturwissenschaften 83, 127129 (1996).


    Google Scholar

  • 68.

    Vrsmarty, C. J. et al. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modelling. Water Resour. Res. 32, 31373150 (1996).


    Google Scholar

  • 69.

    Restrepo, J. D. & Kjerfve, B. Magdalena river: interannual variability (19751995) and revised water discharge and sediment load estimates. J. Hydrol. 235, 137149 (2000).


    Google Scholar

  • 70.

    Mulder, T. & Syvitski, J. P. M. Climatic and morphologic relationships of rivers. Implications of sea level fluctuations on river loads. J. Geol. 104, 509523 (1996).


    Google Scholar

  • 71.

    Poag, C. W. U.S. middle Atlantic continental rise: provenance, dispersal, and deposition of Jurassic to Quaternary sediments. In Geologic Evolution of Atlantic Continental Rises 100156 (eds Poag, C. W. & Graciansky, P. C.) (Van Nostrand Reinhold, 1992).

  • 72.

    Elverhi, A., Hooke, R. L. & Solheim, A. Late Cenozoic erosion and sediment yield from the Svalbard-Barents Sea region; implications for understanding erosion of glacierized basins. Quat. Sci. Rev. 17, 209241 (1998).


    Google Scholar

  • 73.

    OGrady, D. B. & Syvitski, J. P. M. Large-scale morphology of Arctic continental slopes: the influence of sediment delivery on slope form. In Glacier-Influenced Sedimentation on High-Latitude Continental Margins (eds Dowdeswell, J. A. & OCofaigh, C.) 1131 (Geological Society, 2002).

  • 74.

    Goodbred, S. L. & Kuehl, S. A. Holocene and modern sediment budgets for the GangesBrahmaputra river system: evidence for highstand dispersal to floodplain, shelf and deep-sea depocenters. Geology 27, 559562 (1999).


    Google Scholar

  • 75.

    Kettner, A. J. & Syvitski, J. P. M. Predicting discharge and sediment flux of the Po River, Italy since the Late Glacial Maximum. In Analogue and Numerical Forward Modelling of Sedimentary Systems: from Understanding to Prediction (eds De Boer, P. L., Postma, G., van der Zwan, C. J., Burgess, P. M. & Kukla, P.) 171189 (International Association of Sedimentologists, 2008).

  • 76.

    Goodbred, S. L. & Kuehl, S. A. Enormous GangesBrahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 10831086 (2000).


    Google Scholar

  • 77.

    Wang, Z. et al. Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: impacts of sea level, climate and human activity. Earth Sci. Rev. 185, 938955 (2018).


    Google Scholar

  • 78.

    Jenny, J. P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 2297222976 (2019).


    Google Scholar

  • 79.

    Sima, R. J. A dirty truth: humans began accelerating soil erosion 4,000 years ago. Eos https://doi.org/10.1029/2019EO137634 (2019).

  • 80.

    Wu, Z. et al. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 19542015. Sci. Total. Environ. 739, 139653 (2020).


    Google Scholar

  • 81.

    Wu, X. et al. Climate and humans battle for dominance over the Yellow Rivers sediment discharge: from the Mid-Holocene to the Anthropocene. Mar. Geol. 425, 106188 (2020).


    Google Scholar

  • 82.

    Kong, R. et al. Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Sci. Total. Environ. 709, 136163 (2020).


    Google Scholar

  • 83.

    Kettner, A. J., Gomez, B. & Syvitski, J. P. M. Modeling suspended sediment discharge from the Waipaoa River system, New Zealand: the last 3000 years. Water Resour. Res. 43, W07411 (2007).


    Google Scholar

  • 84.

    Giosan et al. Massive erosion in monsoonal central India linked to late Holocene land cover degradation. Earth Surf. Dynam. 5, 781789 (2017).


    Google Scholar

  • 85.

    Meybeck, M. & Vrsmarty, C. J. Fluvial filtering of land to ocean fluxes: from natural Holocene variations to Anthropocene. Comptes Rendus 337, 107123 (2005).


    Google Scholar

  • 86.

    Trguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477501 (2013).


    Google Scholar

  • 87.

    Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471475 (2018).


    Google Scholar

  • 88.

    Trguer, P. et al. Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 12691289 (2021).


    Google Scholar

  • 89.

    Leithold, E. L. & Blair, N. E. Watershed control on the carbon loading of marine sedimentary particles. Geochim. Cosmochim. Acta 65, 22312240 (2001).


    Google Scholar

  • 90.

    Nittrouer, C. A. et al. Writing a Rosetta stone: insights into continental-margin sedimentary processes and strata. In Continental-Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy (eds Nittrouer, C. A. et al.) 148 (IAS, 2007).

  • 91.

    Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean 384 (Cambridge Univ. Press, 2011).

  • 92.

    Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88104 (2006).


    Google Scholar

  • 93.

    Maher, B. A. et al. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the Last Glacial Maximum. Earth Sci. Rev. 99, 6197 (2010).


    Google Scholar

  • 94.

    Saito, Y., Chaimanee, N., Jarupongsakul, T. & Syvitski, J. P. M. Shrinking megadeltas in Asia: sea-level rise and sediment reduction impacts from case study of the Chao Phraya delta. Inprint Newsletter of the IGBP/IHDP Land Ocean Interaction in the Coastal Zone 2007/2, 39 (2007).


    Google Scholar

  • 95.

    Latrubesse, E. M., Amsler, M. L., de Morais, R. P. & Aquino, S. The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia River. Geomorphology 113, 239252 (2009).


    Google Scholar

  • 96.

    Restrepo, J. D. & Syvitski, J. P. M. Assessing the effect of natural controls and land use change on sediment yield in a major Andean river: the Magdalena drainage basin, Colombia. Ambio 35, 6574 (2006).


    Google Scholar

  • 97.

    Wang, H., Yang, Z., Saito, Y., Liu, J. P. & Sun, X. Stepwise decreases of the Huanghe (Yellow River) sediment load (19502004): impacts from climate changes and human activities. Glob. Planet. Change 57, 331354 (2007).


    Google Scholar

  • 98.

    Chen, Y., Overeem, I., Gao, S., Syvitski, J. P. M. & Kettner, A. J. Quantifying sediment storage on the floodplains outside levees along the lower Yellow River during the years 15801849. Earth Surf. Process. Landf. 44, 581594 (2018).


    Google Scholar

  • 99.

    Syvitski, J. P. M., Kettner, A., Peckham, S. D. & Kao, S. J. Predicting the flux of sediment to the coastal zone: application to the Lanyang watershed, northern Taiwan. J. Coast. Res. 21, 580587 (2005).


    Google Scholar

  • 100.

    Walling, D. E. & Fang, D. Recent trends in the suspended sediment loads of the worlds rivers. Glob. Planet. Change 39, 111126 (2003).


    Google Scholar

  • 101.

    Wu, X. et al. Can reservoir regulation along the Yellow River be a sustainable way to save a sinking delta? Earths Future 8, e2020EF001587 (2020).


    Google Scholar

  • 102.

    Syvitski, J. P. M. Deltas at risk. Sustain. Sci. 3, 2332 (2008).


    Google Scholar

  • 103.

    Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total. Environ. 625, 114134 (2018).


    Google Scholar

  • 104.

    Syvitski, J. P. M. & Brakenridge, G. R. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today 23, 410 (2013).


    Google Scholar

  • 105.

    Cooper, A. H., Brown, T. J., Price, S. J., Ford, J. R. & Waters, C. N. Humans are the most significant global geomorphological driving force of the 21st century. Anthropocene Rev. 5, 222229 (2018).


    Google Scholar

  • 106.

    Global Aggregates Information Network (GAIN). GAIN newsletter #4, January 2019. GAIN https://www.gain.ie/s/GAIN_Newsletter_Jan19.pdf (2019).

  • 107.

    Waters, C. N. & Zalasiewicz, J. Concrete: the most abundant novel rock type of the Anthropocene. In The Encyclopedia of the Anthropocene Vol. 1 7585 (eds Sala, D. A. D. & Goldstein, M. I.) (Elsevier, 2018).

  • 108.

    Kemp, D. B., Sadler, P. M. & Vanacker, V. The human impact on North American erosion, sediment transfer, and storage in a geologic context. Nat. Commun. 11, 6012 (2020).


    Google Scholar

  • 109.

    Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 133268133272 (2007).


    Google Scholar

  • 110.

    Reusser, L., Bierman, P. & Rood, D. Quantifying human impacts on rates of erosion and sediment transport at a landscape scale. Geology 43, 171174 (2014).


    Google Scholar

  • 111.

    Bonachea, J. et al. Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin. Sci. Total. Env. 408, 26742695 (2010).


    Google Scholar

  • 112.

    Liu et al. Global vegetation biomass change (19882008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 22, 692705 (2013).


    Google Scholar

  • 113.

    Faour, G. et al. Global trends analysis of the main vegetation types throughout the past four decades. Appl. Geogr. 97, 184195 (2018).


    Google Scholar

  • 114.

    Hooke, R. L. On the history of humans as geomorphic agents. Geology 28, 843846 (2000).


    Google Scholar

  • 115.

    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).


    Google Scholar

  • 116.

    Harden, D. R. A comparison of flood-producing storms and their impacts in northwestern California. In Geomorphic Processes and Aquatic Habitat in the Redwood Creek Basin, Northwestern California. US Geological Survey Professional Paper 1454, D1D9 (USGS, 1995).

  • 117.

    Hewawasam, T., von Blanckenburg, F., Schaller, M. & Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31, 597600 (2003).


    Google Scholar

  • 118.

    Vrsmarty, C. et al. Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Glob. Planet. Change 39, 169190 (2003).


    Google Scholar

  • 119.

    Best, J. Anthropogenic stresses on the worlds big rivers. Nat. Geosci. 12, 721 (2019).


    Google Scholar

  • 120.

    Grill, G. et al. Mapping the worlds free-flowing rivers. Nature 569, 215221 (2019).


    Google Scholar

  • 121.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. Global boom in hydropower dam construction. Aquat. Sci. 77, 161170 (2015).


    Google Scholar

  • 122.

    International Commission on Large Dams. World Register of Dams: general synthesis. WRD http://www.icold-cigb.org/GB/world_register/general_synthesis.asp (2017).

  • 123.

    Syvitski, J. P., Zalasiewicz, J. & Summerhayes, C. Changes to Holocene/Anthropocene patterns of sedimentation from terrestrial to marine. In The Anthropocene as a Geological Time Unit: A Guide to the Scientific Evidence and Current Debate (eds Zalasiewicz, J., Waters, C., Williams, M. & Summerhayes, C.) 90108 (Cambridge Univ. Press, 2019).

  • 124.

    Syvitski, J. P. M., Kettner, A. J., Correggiari, A. & Nelson, B. W. Distributary channels and their impact on sediment dispersal. Mar. Geol. 222/223, 7594 (2005).


    Google Scholar

  • 125.

    Syvitski, J. P. M. & Kettner, A. J. On the flux of water and sediment into the Northern Adriatic. Continental Shelf Res. 27, 296308 (2007).


    Google Scholar

  • 126.

    Syvitski, J. P. M. et al. Anthropocene metamorphosis of the Indus delta and lower floodplain. Anthropocene 3, 2435 (2013).


    Google Scholar

  • 127.

    Laruelle, G. G. et al. Anthopogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob. Biogeochem. Cycles 23, GB4031 (2009).


    Google Scholar

  • 128.

    Harmer, O. P. & Clifford, N. J. Geomorphological explanation of the long profile of the Lower Mississippi River. Geomorphology 84, 222240 (2007).


    Google Scholar

  • 129.

    Galat, D. L. A. O. Flooding to restore connectivity of regulated, large-river wetlands: natural and controlled flooding as complementary processes along the lower Missouri River. Bioscience 48, 721733 (1998).


    Google Scholar

  • 130.

    Day, J. W., Lane, R. R., DElia, C. & Kemp, G. P. Large infrequently operated river diversions for Mississippi delta restoration. Estuar. Coast. Shelf Sci. 183, 112 (2016).


    Google Scholar

  • 131.

    Higgins, S. A., Overeem, I., Rogers, K. G. & Kalina, E. A. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anthrop. 6, 20 (2018).


    Google Scholar

  • 132.

    Monteiro, P. J. M. et al. Towards sustainable concrete. Nat. Mater. 16, 698699 (2017).


    Google Scholar

  • 133.

    Filho, W. L. et al. The unsustainable use of sand: reporting on a global problem. Sustainability 13, 3356 (2021).


    Google Scholar

  • 134.

    Kamboj, V., Kamboj, N. & Sharma, S. Environmental impact of riverbed mining a review. Intl. J. Sci. Res. Rev. 7, 504520 (2017).


    Google Scholar

  • 135.

    Mechi, A. & Sanches, D. L. The environmental impact of mining in the state of So Paulo. Estudos Avanados 24, 209220 (2010).


    Google Scholar

  • 136.

    Bisht, A. & Gerber, J. F. Ecological distribution conflicts (EDCs) over mineral extractivism in India: an overview. Extract. Indust. Soc. 4, 548563 (2017).


    Google Scholar

  • 137.

    Bisht, A. Discontent, conflict, social resistance and violence at non-metallic mining frontiers in India. Ecol. Econ. Soc. 2, 3142 (2019).


    Google Scholar

  • 138.

    Bisht, A. Conceptualizing sand extractivism: deconstructing an emerging resource frontier. Extract. Indust. Soc. 8, 100904 (2021).


    Google Scholar

  • 139.

    Bravard, J.-P. et al. Geography of sand and gravel mining in the Lower Mekong River. EchoGeo http://echogeo.revues.org/13659 (2013).

  • 140.

    Hackney, C. R. et al. Sand mining far outpaces natural supply in a large alluvial river. Earth Surf. Dyn. 9, 13231334 (2021).


    Google Scholar

  • 141.

    Hackney, C. R. et al. Riverbank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3, 217225 (2020).


    Google Scholar

  • 142.

    United Nations. Import of natural sand except sand for mineral extraction as reported. United Nations Commodity Trade Statistics Database http://comtrade.un.org (2014).

  • 143.

    Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970971 (2017).


    Google Scholar

  • 144.

    James, J. et al. The effective development of offshore aggregates in south-east Asia. Technical Report WC/99/9 (British Geological Survey, 1999).

  • 145.

    Jia, L. et al. Impacts of the large amount of sand mining on riverbed morphology and tidal dynamics in lower reaches and delta of the Dongjiang River. J. Geogr. Sci. 17, 197211 (2007).


    Google Scholar

  • 146.

    Velegrakis, A. F. et al. European marine aggregates resources: origins, usage, prospecting and dredging techniques. J. Coast. Res. 51, 114 (2010).


    Google Scholar

  • 147.

    Amoroso, R. O. et al. Bottom trawl fishing footprints on the worlds continental shelves. Proc. Natl Acad. Sci. USA 115, E10275E10282 (2018).


    Google Scholar

  • 148.

    Martn, J., Puig, P., Masqu, P., Palanques, A. & Snchez-Gmez, A. Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon. PLoS ONE 9, e104536 (2014).


    Google Scholar

  • 149.

    Paradis, S. et al. Bottom trawling along submarine canyons impacts deep sedimentary regimes. Sci. Rep. 7, 43332 (2017).


    Google Scholar

  • 150.

    Oberle, F. K. J., Storlazzi, C. D. & Hanebuth, T. J. J. What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Syst. 159, 109119 (2016).


    Google Scholar

  • 151.

    GISTEMP Team. GISS surface temperature analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies http://data.giss.nasa.gov/gistemp/ (2021).

  • 152.

    Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 63076326 (2019).


    Google Scholar

  • 153.

    Schmidt, G. A., Ruedy, R. A., Miller, R. L. & Lacis, A. A. Attribution of the present-day total greenhouse effect. J. Geophys. Res. 115, D20106 (2010).


    Google Scholar

  • 154.

    Zanna, L., Khatlwala, S., Gregory, J. M., Ison, J. & Helmbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116, 11261131 (2019).


    Google Scholar

  • 155.

    Rempel, A. W., Marshall, J. A. & Roering, J. J. Modeling relative frost weathering rates at geomorphic scales. Earth Planet. Sci. Lett. 453, 8795 (2016).


    Google Scholar

  • 156.

    Syvitski, J. P. M., Peckham, S. D., Hilberman, R. D. & Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment. Geol. 162, 524 (2003).


    Google Scholar

  • 157.

    Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high Arctic. Geophys. Res. Lett. 46, 66816689 (2019).


    Google Scholar

  • 158.

    Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681692 (2013).


    Google Scholar

  • 159.

    Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323330 (2002).


    Google Scholar

  • 160.

    Li, D. et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia. Science 374, 599603 (2021).


    Google Scholar

  • 161.

    Syvitski, J. P. M. & Andrews, J. T. Climate change: numerical modelling of sedimentation and coastal processes, Eastern Canadian Arctic. Arctic Alpine Res. 26, 199212 (1994).


    Google Scholar

  • 162.

    Van der Broeke, M. et al. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10, 19331946 (2016).


    Google Scholar

  • 163.

    Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101104 (2017).


    Google Scholar

  • 164.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).


    Google Scholar

  • 165.

    Mankoff, K. D. et al. Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data 12, 13671383 (2020).


    Google Scholar

  • 166.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 65736593 (2014).


    Google Scholar

  • 167.

    Zimov, S. A. et al. Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys. Res. Lett. 33, L20502 (2006).


    Google Scholar

  • 168.

    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138143 (2020).


    Google Scholar

  • 169.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).


    Google Scholar

  • 170.

    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).


    Google Scholar

  • 171.

    Schweiger, A., Zhang, J., Lindsay, R., Steele, M. & Stern, H. PIOMAS arctic sea ice volume reanalysis. Polar Science Centre http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/ (2019).

  • 172.

    Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).


    Google Scholar

  • 173.

    Crawford, A. D. & Serreze, M. C. Projected changes in the Arctic frontal zone and summer Arctic cyclone activity in the CESM large ensemble. J. Clim. 30, 98479869 (2017).


    Google Scholar

  • 174.

    Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, L03503 (2009).


    Google Scholar

  • 175.

    Gibbs, A. E., Ohman, K. A., Coppersmith, R. & Richmond, B. M. National Assessment of Shoreline Change: A GIS Compilation of Updated Vector Shorelines and Associated Shoreline Change Data for the North Coast of Alaska, U.S. Canadian border to Icy Cape (US Geological Survey, 2017).

  • 176.

    Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on arctic permafrost coastlines. Estuaries Coasts 35, 383400 (2012).


    Google Scholar

  • 177.

    Barnhart, K. R. et al. Modelling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth 119, 11551179 (2014).


    Google Scholar

  • 178.

    Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 17771799 (2014).


    Google Scholar

  • 179.

    Syvitski, J., Cohen, S., Miara, A. & Best, J. River temperature and the thermal-dynamic transport of sediment. Glob. Planet. Change 178, 168183 (2019).


    Google Scholar

  • 180.

    Scott, K. M. Effects of Permafrost on Stream Channel Behavior in Arctic Alaska USGS Professional Paper 1068, 119 (US Geological Survey, 1978).

  • 181.

    Madakumbura, G. D. et al. Event-to-event intensification of the hydrologic cycle from 1.5C to a 2C warmer world. Sci. Rep. 9, 3483 (2019).


    Google Scholar

  • 182.

    Wiman, C., Hamilton, B., Dee, S. G. & Muoz, S. E. Reduced lower Mississippi River discharge during the Medieval era. Geophys. Res. Lett. 48, e2020GL091182 (2021).


    Google Scholar

  • 183.

    Kettner, A. et al. Estimating change in flooding for the 21st Century under a conservative RCP forcing: a global hydrological modelling assessment. In Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting AGU Geophysical Monograph Vol. 233 157167 (Wiley-Blackwell, 2018).

  • 184.

    McDonald, K. C., Kimball, J. S., Njoku, E., Zimmerman, R. & Zhao, M. Variability in springtime thaw in the terrestrial high latitudes: monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact. 8, 123 (2004).


    Google Scholar

  • 185.

    Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 4458 (2014).


    Google Scholar

  • 186.

    Bywater-Reyes, S., Segura, C. & Bladon, K. D. Geology and geomorphology control suspended sediment yield and modulate increases following timber harvest in temperate headwater streams. J. Hydrol. 548, 754769 (2017).


    Google Scholar

  • 187.

    Tenorio, G. E. et al. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys. Geomorphology 308, 175189 (2018).


    Google Scholar

  • 188.

    Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979985 (2019).


    Google Scholar

  • 189.

    Mirzabaev, A. et al. Desertification. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) Ch. 3, 249343 (IPCC, 2019).

  • 190.

    Runesson, U. Forest fires an overview. Boreal Forests http://www.borealforest.o.rg/world/innova/forest_fire.htm (2020).

  • 191.

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 19842011. Geophys. Res. Lett. 41, 29282933 (2014).


    Google Scholar

  • 192.

    Warrick, J. A. et al. The effects of wildfire on the sediment yield of a coastal California watershed. GSA Bull. 124, 11301146 (2012).


    Google Scholar

  • 193.

    DeBano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231232, 195206 (2000).


    Google Scholar

  • 194.

    Cannon, S. H. et al. Predicting the probability and volume of post-wildfire debris flows in the intermountain western United States. Geol. Soc. Am. Bull. 122, 127144 (2010).


    Google Scholar

  • 195.

    Santi, P. M. & Ringers, F. K. Wildfire and landscape change. In Treatise on Geomorphology 262287 (Elsevier, 2020).

  • 196.

    DiBiase, R. A. & Lamb, M. P. Vegetation and wildfire controls on sediment yield in bedrock landscapes. Geophys. Res. Lett. 40, 10931097 (2013).


    Google Scholar

  • 197.

    DiBiase, R. A. & Lamb, M. P. Dry sediment loading of headwater channels fuels post-wildfire debris flows in bedrock landscapes. Geology 48, 189193 (2019).


    Google Scholar

  • 198.

    Moody, J. A. & Martin, D. A. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. Int. J. Wildland Fire 18, 96115 (2009).


    Google Scholar

  • 199.

    Neukom, R. et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550554 (2019).


    Google Scholar

  • 200.

    Hooijer, H. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nature. Nat. Commun. 12, 3592 (2021).


    Google Scholar

  • 201.

    Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Changes 57, 261282 (2007).


    Google Scholar

  • 202.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681689 (2009).


    Google Scholar

  • 203.

    Tessler, Z. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638643 (2015).


    Google Scholar

  • 204.

    Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the worlds deltas. Nature 516, 3133 (2014).


    Google Scholar

  • 205.

    Tessler, Z. D., Vrsmarty, C. J., Overeem, I. & Syvitski, J. P. M. A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology 305, 209220 (2018).


    Google Scholar

  • 206.

    Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Mekong deltas much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 10, 3847 (2019).


    Google Scholar

  • 207.

    Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).


    Google Scholar

  • 208.

    Ishitsuka, K. et al. Natural surface rebound of the Bangkok plain and aquifer characterization by persistent scatterer interferometry. Geochem. Geophys. Geosyst. 15, 965974 (2014).


    Google Scholar

  • 209.

    Turner, R. E., Swenson, E. M., Milan, C. S. & Lee, J. M. Hurricane signals in salt marsh sediments: Inorganic sources and soil volume. Limnol. Oceanogr. 52, 12311238 (2007).


    Google Scholar

  • 210.

    Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449452 (2006).


    Google Scholar

  • 211.

    Rogers, K. G., Syvitski, J. P. M., Overeem, I., Higgins, S. & Gilligan, J. Farming practices and anthropogenic delta dynamics. In Proceedings IAHS-IAPSO-IASPEI Joint 37th Scientific Assembly, Gothenburg, Sweden Vol. 358 133142 (IAHS, 2013).

  • 212.

    Wang, H. J. et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Glob. Planet. Change 157, 93113 (2017).


    Google Scholar

  • 213.

    Vousdoukas, M. I. et al. Economic motivation for raising coastal flood defenses in Europe. Nat. Commun. 11, 2119 (2020).


    Google Scholar

  • 214.

    Luijendijk, A. et al. The state of the worlds beaches. Sci. Rep. 8, 6641 (2018).


    Google Scholar

  • 215.

    Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E. & Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 8, 12876 (2018).


    Google Scholar

  • 216.

    Peduzzi, P. Sand, rarer than one thinks. Environ. Dev. 11, 208218 (2014).


    Google Scholar

  • 217.

    Webb, A. Technical Report an assessment of coastal processes, impacts, erosion mitigation options and beach mining (Bairiki/Nanikai causeway, Tungaru Central Hospital coastline and Bonriki runway South Tarawa, Kiribati). EU-SOPAC Project Report Vol.46 (EU-SOPAC, 2005).

  • 218.

    McKenzie, E., Woodruff, A. & McClennen, C. Economic assessment of the true costs of aggregate mining in Majuro atoll, Republic Of The Marshall Islands (South Pacific Applied Geoscience Commission (SOPAC), 2006).

  • 219.

    De Schipper, M. A., Ludka, B. C., Raubenheimer, B., Luijendijk, A. P. & Schlaucher, T. A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2, 7084 (2021).


    Google Scholar

  • 220.

    Syvitski, J. P. M. Supply and flux of sediment along hydrological pathways: research for the 21st century. Glob. Planet. Change 39, 111 (2003).


    Google Scholar

  • 221.

    Warrick, J. A. & Milliman, J. D. Hyperpycnal sediment discharge from semiarid southern California rivers: implications for coastal sediment budgets. Geology 31, 781784 (2003).


    Google Scholar

  • 222.

    Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H. & Smith, L. C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 19512000. Glob. Planet. Change 62, 187194 (2008).


    Google Scholar

  • 223.

    National Oceanic and Atmospheric Administration (NOAA). NOAA delivers new U.S. climate normals: decadal update from NCEI gives forecasters and public latest averages for 19912020. NOAA https://www.ncei.noaa.gov/news/noaa-delivers-new-us-climate-normals (2021).

  • 224.

    Brakenridge, G. R. et al. Calibration of satellite measurements of river discharge using a global hydrology model. J. Hydrol. 475, 123136 (2013).


    Google Scholar

  • 225.

    Hudson, B. et al. MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8, 11611176 (2014).


    Google Scholar

  • 226.

    Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Toward improved accuracy of remote sensing approaches for quantifying suspended sediment: Implications for suspended-sediment monitoring. J. Geophys. Res. Earth Surf. 125, e2019JF005033 (2020).


    Google Scholar

  • 227.

    Brakenridge, G. R. et al. Design with nature: causation and avoidance of catastrophic flooding, Myanmar. Earth Sci. Rev. 165, 81109 (2017).


    Google Scholar

  • 228.

    Verburg, P. H. et al. Methods and approaches to modelling the Anthropocene. Glob. Environ. Change 39, 328340 (2016).


    Google Scholar

  • 229.

    Moragoda, N. & Cohen, S. Climate-induced trends in global riverine water discharge and suspended sediment dynamics in the 21st century. Glob. Planet. Change 191, 103199 (2020).


    Google Scholar

  • 230.

    Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).


    Google Scholar

  • 231.

    VEMAP Members. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob. Biogeochem. Cycles 9, 407437 (1995).


    Google Scholar

  • 232.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP): project framework. Proc. Natl Acad. Sci. 111, 32283232 (2014).


    Google Scholar

  • 233.

    Tucker, G. E. et al. CSDMS: A community platform for numerical modeling of Earth-surface processes. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2021-223 (2021).

  • 234.

    Rousseau, Y., Watson, R. A., Blanchard, J. L. & Fulton, E. A. Evolution of global marine fishing fleets and the response of fished resources. Proc. Natl Acad. Sci. USA 116, 1223812243 (2019).


    Google Scholar

  • 235.

    Nageswara Rao, K. et al. Palaeogeography and evolution of the Godavari delta, east coast of India during the Holocene: An example of wave-dominated and fan-delta settings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 213233 (2015).


    Google Scholar

  • 236.

    Tanabe, S., Saito, Y., Vu, Q. L., Hanebuth, T. J. J. & Ngo, Q. L. Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment. Geol. 187, 2961 (2006).


    Google Scholar

  • 237.

    Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181184 (2014).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.