Now Reading
Environmental selection and epistasis in an empirical phenotypeenvironmentfitness landscape
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Environmental selection and epistasis in an empirical phenotypeenvironmentfitness landscape

  • Dalziel, A. C. Rogers, S. M. and Schulte, P. M. Linking genotypes with phenotypes & fitness: How mechanistic biology can inform molecular ecology. Mol. Ecol. 18, 49975017 (2009).

    CAS
    PubMed

    Google Scholar

  • Kaltenbach M. & Tokuriki N. Dynamics and constraints in enzyme evolution. J. Exp. Zool. Zool. 322, 468487 (2014).

    CAS

    Google Scholar

  • Yi, X. Dean, A. M. Adaptive landscapes during the age of synthetic Biology Mol. Biol. Evol. 36, 890907 (2019).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kemble, H., Nghe, P. & Tenaillon, O. Recent insights into the genotypephenotype relation from massively parallel genetic tests. Evol. Appl. 12, 17211742 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Bershtein S., Serohijos A. W., & Shakhnovich E. I. Bridging physical scales in evolutionary Biology: From protein sequence space to the fitness of organisms or populations. Curr. Opin. Struct. Biol. 42, 3140 (2017).

    CAS
    PubMed

    Google Scholar

  • DePristo M. A. Weinreich D. M. & Hartl D. L. Missense meanderings through sequence space: a biological view of protein evolutionary. Nat. Rev. Genet. 6, 678 (2005).

    CAS
    PubMed

    Google Scholar

  • Pl, C., Papp, B. & Lercher, M. J. A holistic view of the evolution of protein. Nat. Rev. Genet. 7, 337348 (2006).

    PubMed

    Google Scholar

  • Rodrigues, J. V. et al. Biophysical principles predict drug resistance fitness landscapes. Proc. Natl Acad. Sci. USA 113, E14701478 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hartl, D. L. Dykhuizen D. E. & Dean A. M. Limits to adaptation: The evolution of selective neutrality. Genetics 111, 655674 (1985).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lunzer M., Miller S. P. and Felsheim R. & Dean A. M. Biochemical architecture of an adaptive landscape ancient. Science 310, 499501 (2005).

    CAS
    PubMed

    Google Scholar

  • Lundin, E., Tang, P.-C., Guy, L., Nsvall, J. & Andersson, D. I. Experimental determination and prediction the fitness effects random point mutations in biosynthetic enzyme HisA. Mol. Biol. Evol. 35, 704718 (2018).

    CAS
    PubMed

    Google Scholar

  • Tokuriki, N. and Tawfik D. S. Stability effects mutations and protein evolution. Curr. Opin. Struct. Biol. 19, 596604 (2009).

    CAS
    PubMed

    Google Scholar

  • Sarkisyan, K. S. et al. Local fitness landscape for the green fluorescent protein. Nature 533, 397401 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • P. Dasmeh & A. W. R. Serohijos. Estimating the contribution folding stability to nonspecific epistasis. Proteins Struct. Funct. Bioinforma. 86, 12421250 (2018).

    CAS

    Google Scholar

  • Bershtein S., Segal M., Bekerman R., Tokuriki N. & Tawfik D. S. Robustnessepistasis Link shapes the fitness landscape for a randomly drifting protein. Nature 444, 929932 (2006).

    CAS
    PubMed

    Google Scholar

  • Pokusaeva, V. O. et al. An experimental study of the interactions of amino acid sequences from orthologous sequences that shape a complex fitness landscape. PLoS Genet. 15, e1008079 (2019).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Diss, G. & Lehner, B. The genetic landscape of a physical interaction. eLife 7, e32472 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Wylie, C. S. & Shakhnovich, E. I. Most mutational fitness effects in viruses can be explained by a biophysical protein folding model. Proc. Natl Acad. Sci. USA 108, 99169921 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chou, H.-H., Delaney, N. F., Draghi, J. A. A. PLoS Genet. 10, e1004149 (2014).

    PubMed
    PubMed Central

    Google Scholar

  • Bershtein, S., Mu, W., Serohijos, A. W. R., Zhou, J. & Shakhnovich, E. I. Protein quality control involves folding intermediates to limit the effects of mutations upon organismal fitness. Mol. Mol. 49, 133144 (2013).

    CAS
    PubMed

    Google Scholar

  • Stiffler M. A. and Hekstra D. R. & Ranganathan R. Evolution as a function purifying selection in TEM-1 –lactamase. Cell 160, 882892 (2015).

    CAS
    PubMed

    Google Scholar

  • Mehlhoff, J. D. et al. Mutations can have collateral fitness effects. Proc. Natl Acad. Sci. USA 117, 1159711607 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dean, A.M. A molecular study of genotype and environment interactions. Genetics 139, 1933 (1995).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring global epistasis’ shape. Proc. Natl Acad. Sci. USA 115, E7550E7558 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fowler, D. M. et al. High-resolution mapping the relationships between protein sequencefunctions. Nat. Methods 7, 741746 (2010).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fowler, D. M., Stephany, J. J. & Fields S. Monitoring the activity of protein variants in large scales using deep mutational scanning Nat. Protoc. 9, 22672284 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Melnikov, A., Rogov, P., Wang, L., Gnirke, A. T. S. Mikkelsen Comprehensive mutational scanning of a Kinase in Vivo reveals substrate-dependent fitness landscapes Nucleic Acids Res. 42, e112 (2014).

  • Wrenbeck E. E., Azouz L. R. & Whitehead T. A. Single-mutation fitness maps for an enzyme on multiple substrates show that specificity is globally encoded. Nat. Commun. 8, 15695 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mavor, D. et al. Study of the ubiquitin fitness landscapes in classroom settings under different chemical stressors. eLife 5, e15802 (2016).

  • Noda-Garca, L. et al. Complex bacterial environments are dominated by chance and pleiotropy. Nat. Microbiol. 4, 12211230 (2019).

    PubMed

    Google Scholar

  • Starr, T. N. Picton and Thornton J. W. Alternate evolutionary histories in the sequence space for an old protein. Nature 549, 409413 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Starr, T. N. et al. Deep mutational scanning of the SARS-CoV-2 receptor binding region reveals constraints on folding, ACE2 binding. Cell 182, 12951310 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a gym landscape. Proc. Natl Acad. Sci. USA 108, 78967901 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Firnberg, E., Labonte, J. W., Gray, J. J. M. & Ostermeier M. An extensive, high-resolution map showing the fitness landscape of genes. Mol. Biol. Evol. 31, 15811592 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Jacquier, H. et al. Capturing the mutational landscape for the beta-lactamase TEM-1. Proc. Natl Acad. Sci. USA 110, 1306713072 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Klesmith, J. R. Bacik J.-P. Wrenbeck E. E. Michalczyk R. & Whitehead T. A. Deep mutational scanning illuminates trade-offs between enzyme solubility and enzyme fitness. Proc. Natl Acad. Sci. USA 114, 22652270 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, J. Z., Fowler D. M. & Tokuriki N. Comprehensive investigation of the substrate recognition, translocation, stability and stability requirements in VIM-2 lactamase. eLife 9, e56707 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Meer, J. et al. The engineering of enantioselective Michaelases can be guided by the use of mutability landscapes created by a promiscuous Tautomerase. Nat. Commun. 7, 10911 (2016).

  • Thompson, S., Zhang, Y., Ingle, C., Reynolds, K. A. T. Kortemme, T. Modified expression of a quality control protase E. coliThe in vivo mutational landscape is reshaped by a model enzyme. eLife 9, e53476 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kemble, H. et al. Complex genetic interactions occur in metabolic pathways due to flux, toxicity, or expression costs. Sci. Adv. 6, eabb2236 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Starita, L. M. et al. High-throughput Mutagenesis identified activity-enhancing mutations within an E3 ubiquitin-ligase. Proc. Natl Acad. Sci. USA 110, E1263E1272 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Flynn, J. M. et al. Comprehensive fitness maps of Hsp90 demonstrate widespread environmental dependence. eLife 9, e53810 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • A. Horovitz and R. C. Fleisher & T. Mondal. Double-mutant cycles: New directions and Applications. Curr. Opin. Struct. Biol. 58, 1017 (2019).

    CAS
    PubMed

    Google Scholar

  • V. H. Salinas and R. Ranganathan. Coevolutionary inference of the amino acid interactions that underlie protein function. eLife 7, e34300 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • Mavor, D. et al. Extension of chemical perturbations to the ubiquitin fitness environment in a classroom setting uncovers new constraints on sequence tolerance. Biol.Open 7, bio036103 (2018).

  • Rockah-Shmuel, L., Tth-Petrczy, . D. S. Tawfik and L. Rockah-Shmuel. A prolonged drift systematic mapping of the space of protein mutational spaces reveals the deleterious consequences of seemingly neutral mutations. PLoS Comput. Biol. 11, e1004421 (2015).

    PubMed
    PubMed Central

    Google Scholar

  • Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. Fowler, D.M. Quantitative missense variant effects prediction using large-scale data on mutagenesis. Cell Syst. 6, 116124 (2018).

    CAS
    PubMed

    Google Scholar

  • Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations PLoS Pathog. 7, e1002158 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Westhoff, S. et al. The evolution of no-cost resistance to sub-MIC concentrations streptomycin Streptomyces coelicolour. ISME J. 11, 11681178 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Liu, A. et al. A simple, sensitive colour test to detect antibiotics and other genotoxic agents: Selective advantage of resistant strains at trace levels Antimicrob. Agents Chemother. 55, 12041210 (2011).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Jasinska, W. et al. Chromosomal barcoding E. coliHigh resolution populations reveal lineage diversity dynamics. Nat. Ecol. Evol. 4, 437452 (2020).

    PubMed

    Google Scholar

  • Frhlich, C. et al. Low -lactam levels drive cryptic -lactamase mutation. mSphere https://doi.org/10.1128/mSphere.00108-21 (2021).

  • Andersson, D. I. Hughes, D. Microbiological consequences of sublethal levels antibiotics. Nat. Rev. Microbiol. 12, 465478 (2014).

    CAS
    PubMed

    Google Scholar

  • Baquero, F., Negri, M. C., Morosini, M. I. & Blzquez, J. Selection of very small differences during bacterial evolution. Int. Microbiol. 1, 295300 (1998).

    CAS
    PubMed

    Google Scholar

  • Drlica, K. & Zhao X. Mutant selection windows hypothesis updated. Clin. Infect. Dis. 44, 681688 (2007).

    PubMed

    Google Scholar

  • Blondeau J. M. The mutant prevention concentrate and mutant selection windows approach to antimicrobial susceptibility testing. Vet. Dermatol. 20, 383396 (2009).

    PubMed

    Google Scholar

  • Das, S. G., Direito, S. O., Waclaw, B., Allen, R. J. & Krug, J. Predictable properties of fitness landscapes that are influenced by adaptational tradeoffs. eLife 9, e55155 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 12041218 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Domingo, J., Baeza-Centurion, P. & Lehner, B. The causes and consequences genetic interactions (epistasis). Annu. Rev. Genomics Hum. Genet. 20, 433460 (2019).

    CAS
    PubMed

    Google Scholar

  • Yang, G. et al. Yang, G. et al. Nat. Chem. Biol. 15, 11201128 (2019).

    CAS
    PubMed

    Google Scholar

  • Nishikawa K. K. and Hoppe N. Smith Smith R. Smith R. Smith R. Bingman C. Raman S. Epistasis are the fitness landscapes of an allosteric particularity switch. Nat. Commun. 12, 5562 (2021).

    PubMed
    PubMed Central

    Google Scholar

  • Baier, F. et al. Cryptic gene variation shapes the adaptive evolution potential of enzymes. eLife 8, e40789 (2019).

  • Schenk, M. F., Szendro, I. G., Salverda, M. L. M., Krug, J. & de Visser, J. A. G.M. Epistasis patterns between beneficial mutations in an anti-biotic resistance gene. Mol. Biol. Evol. 30, 17791787 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bank, C., Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. A systematic survey of the intragenic epistatic landscape. Mol. Biol. Evol. 32, 229238 (2015).

    CAS
    PubMed

    Google Scholar

  • Manrubia, S. et al. From genotypes, organisms: State-of-the-art perspectives and perspectives on a cornerstone of evolutionary dynamics. Phys. Life Rev.. 38, 55106 (2021).

  • Araya, C. L. et al. Thermodynamic stability is a fundamental property of protein that can only be discovered by large-scale measurements on protein function. Proc. Natl Acad. Sci. USA 109, 1685816863 (2012).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Olson C. A., Wu N. C., & Sun R. A comprehensive biological description of pairwise epistasis through an entire protein domain. Curr. Biol. 24, 26432651 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Palmer, A. C. et al. Delayed commitment in evolutionary fate in antibiotic resistance fitness environments Nat. Commun. 6, 7385 (2015).

    CAS
    PubMed

    Google Scholar

  • Miton, C. M. and Tokuriki N. How mutational epistasis affects predictability in protein design and evolution. Protein Sci. 25, 12601272 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Russ, D. et al. Escape mutations avoid a compromise between resistance to beta-lactamase inhibitors and resistance to beta-lactam resistance. Nat. Commun. 11, 2029 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tack, D. S. et al. The genotypephenotype landscape for an allosteric prot. Mol. Syst. Biol. 17, e10847 (2021).

  • Steinberg, B. Steinberg, B. Sci. Adv. 2, e1500921 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • Zwart, M. P. et al. Uncovering the causes of adaptive advantages of synonymous mutations within TEM-1 –lactamase. Heredity 121, 406421 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Edgar, R. C. & Flyvbjerg H. Error filtering and pair assembly for next-generation sequencing reads. Bioinformatics 31, 34763482 (2015).

    CAS
    PubMed

    Google Scholar

  • Sebaugh J. L. & McCray P. D. Defining a linear section of sigmoid curves: bend point. Pharm. Stat. 2, 167174 (2003).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.