Now Reading
Ice-dominated Arctic deltas | Nature Reviews Earth & Environment
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Ice-dominated Arctic deltas | Nature Reviews Earth & Environment

  • Forbes, D. L. in Coasts and Estuaries Ch. 8 (eds Wolanski, E. et al.) 123147 (Elsevier, 2019). This is a comprehensive review of process studies in the Mackenzie Delta and Canadian fjord deltas.

  • Stanley, D. J. & Warne, A. Holocene sea level change and early human utilization of deltas. GSA Today 7, 17 (1995).


    Google Scholar

  • Mason, O. & Friesen, M. Out of the Cold: Archeology on the Arctic Rim of North America (The Society for American Archeology, 2018).

  • Bobrovitskaya, N. N., Zubkova, C. & Meade, R. H. Discharges and yields of suspended sediment in the Ob and Yenisey Rivers of Siberia. IAHS-AISH Publ. 236, 115123 (1996).


    Google Scholar

  • Vrsmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169190 (2003).


    Google Scholar

  • Lehner, B. et al. High-resolution mapping of the worlds reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494502 (2011).


    Google Scholar

  • Walker, H. J. Arctic deltas. J. Coast. Res. 14, 718738 (1998). This classic paper reviews Arctic deltas with lessons learned from 30 years of field studies in the Colville River delta.


    Google Scholar

  • Tessler, Z. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638643 (2013).


    Google Scholar

  • Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681686 (2009).


    Google Scholar

  • Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 1335 (2015).


    Google Scholar

  • Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 65736593 (2014).


    Google Scholar

  • Gordeev, V. V. Fluvial sediment flux to the Arctic Ocean. Geomorphology 80, 94104 (2006).


    Google Scholar

  • Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 57155737 (2010).


    Google Scholar

  • Whitefield, J., Winsor, P., McClelland, J. & Menemenlis, D. A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean. Model. 88, 115 (2015).


    Google Scholar

  • McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 30, 11451165 (2016). This paper presents POC and nitrogen fluxes for the Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma deltas from 9 years of field campaigns covering different seasons.


    Google Scholar

  • Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest Arctic rivers. Glob. Biogeochem. Cycles 21, 19 (2007).


    Google Scholar

  • Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 20002016 at 1 km2 scale. Earth Sci. Rev. 193, 299316 (2019).


    Google Scholar

  • Bianchi, T. S. & Allison, M. A. Large-river delta-front estuaries as natural recorders of global environmental change. Proc. Natl Acad. Sci. USA 106, 80858092 (2009).


    Google Scholar

  • Shields, M. R. et al. Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 10, 846851 (2017).


    Google Scholar

  • Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450453 (2015).


    Google Scholar

  • Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).


    Google Scholar

  • Parmentier, F. J. W. et al. A synthesis of the Arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46, 5369 (2017).


    Google Scholar

  • Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171179 (2015).


    Google Scholar

  • Vonk, J. E. et al. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochim. Cosmochim. Acta 171, 100120 (2015).


    Google Scholar

  • Fuchs, M. et al. Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. Arktos 4, 118 (2018).


    Google Scholar

  • Schirrmeister, L. et al. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands a review. Quat. Int. 241, 325 (2011).


    Google Scholar

  • Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 7586 (2017).


    Google Scholar

  • Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C. & Dise, N. B. Methane emissions from tundra environments YukonKuskokwim Delta, Alaska. J. Geophys. Res. 97, 16,64516,660 (1992).


    Google Scholar

  • Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 38 (2017).


    Google Scholar

  • Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Glob. Biogeochem. Cycles 16, 114 (2002). This is a comprehensive synthesis of observational data on fluvial sediment fluxes for the Yenisei, Lena, Ob, Mackenzie, Yukon, Pechora, Kolyma and Severnaya Dvina rivers, illustrating their relatively low sediment loads compared to rivers in lower latitudes.


    Google Scholar

  • Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, 117 (2021).


    Google Scholar

  • Leffingwell, E. K. The Canning River region, northern Alaska. USGS Prof. Pap. 109, 1251 (1919).


    Google Scholar

  • Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. USGS Prof. Pap. 1068, 119 (1978).


    Google Scholar

  • Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 13491359 (2003). This paper presents theoretical model development and field data of bank erosion in permafrost-affected rivers.


    Google Scholar

  • Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in central Siberia. Geophys. Res. Lett. 34, 14 (2007).


    Google Scholar

  • Walker, J., Arnborg, L. & Peippo, J. Riverbank erosion in the Colville Delta. Alaska. Geogr. Ann. 69, 6170 (1987). This paper presents observational data on slow rates of river bank erosion in different substrates and main versus distributary delta channels.


    Google Scholar

  • Lauzon, R., Piliouras, A. & Rowland, J. C. Ice and permafrost effects on delta morphology and channel dynamics. Geophys. Res. Lett. 46, 65746582 (2019). This numerical modelling study investigates the effects of bank erodability on Arctic delta network topology.


    Google Scholar

  • Lim, Y. J., Levy, J. S., Goudge, T. A. & Kim, W. Ice cover as a control on the morphodynamics and stratigraphy of Arctic deltas. Geology 47, 399402 (2019).


    Google Scholar

  • Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (AMAP, 2017); https://www.amap.no/documents/download/2987/inline.

  • Hanna, E. et al. Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, 13361352 (2020).


    Google Scholar

  • Turetsky, M. R. Permafrost collapse is accelerating carbon release. Nature 569, 3234 (2019).


    Google Scholar

  • Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost a review. Vadose Zone J. 15, 120 (2016).


    Google Scholar

  • Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).


    Google Scholar

  • Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 17771799 (2014). The mapping of the onset of open water and its duration along the entire Arctic coast from remote-sensing data shows a 1.53-fold expansion of sea-ice-free conditions over the past three decades.


    Google Scholar

  • Hill, P. R., Blasco, S., Harper, J. & Fissel, D. Sedimentation on the canadian beaufort shelf. Continental Shelf Res. 11, 821842 (1991).


    Google Scholar

  • Hill, P. R., Peter Lewis, C., Desmarais, S., Kauppaymuthoo, V. & Rais, H. The Mackenzie Delta: sedimentary processes and facies of a high-latitude, fine-grained delta. Sedimentology 48, 10471078 (2001).


    Google Scholar

  • Naidu, A. S. & Mowatt, T. C. in Deltas: Models for Exploration (ed. Broussard, M. L.) 283309 (Houston Geological Society, 1975).

  • Dupre, W. R. & Thompson, R. The Yukon delta: a model for deltaic sedimentation in an ice-dominated environment. Proc. Annu. Offshore Technol. Conf. 5, 657664 (1979). This classic description of delta processes in the Arctic setting was the first to propose using ice dominance as a classification criterion for high-latitude deltas.


    Google Scholar

  • Arnborg, L. & Walker, J. Suspended load in the Colville River, Alaska, 1962. Geogr. Ann. 49, 131144 (1966).


    Google Scholar

  • Walker, H. J. in Symposium on the Hydrology of Deltas 209219 (IAHS, 1970).

  • Walker, H. J. & Hudson, P. F. Hydrologic and geomorphic processes in the Colville River delta, Alaska. Geomorphology 56, 291303 (2003).


    Google Scholar

  • Dupre, W. Yukon Delta Coastal Processes Study (OSTI, 1980); https://www.osti.gov/biblio/5793121-yukon-delta-coastal-processes-study-final-report.

  • Nelson, C. H., Dupre, W., Fleld, M. & Howard, J. D. Variations in sand body types on the Eastern Bering Sea epicontinental shelf. Geol. Mijnbouw 61, 3748 (1982).


    Google Scholar

  • Are, F. & Reimnitz, E. An overview of the Lena River Delta setting: geology, tectonics, geomorphology, and hydrology. J. Coast. Res. 16, 10831093 (2000). This is a synthesis paper on the long-term evolution of the Lena Delta.


    Google Scholar

  • Reimnitz, E. Interactions of river discharge with sea ice in proximity of Arctic deltas: a review. Polarforschung 70, 123134 (2000).


    Google Scholar

  • Reimnitz, E. & Bruder, K. River discharge into an ice-covered ocean and related sediment dispersal, Beaufort Sea, coast of Alaska. Geol. Soc. Am. Bull. 83, 861866 (1972).


    Google Scholar

  • Piliouras, A. & Rowland, J. C. Arctic river delta morphologic variability and implications for riverine fluxes to the coast. J. Geophys. Res. Earth Surf. 125, 120 (2020).


    Google Scholar

  • Kasper, J. L. & Weingartner, T. J. The spreading of a buoyant plume beneath a landfast ice cover. J. Phys. Oceanogr. 45, 478494 (2015). This process modelling study uses the Regional Ocean Model System to highlight the effects of sub-ice discharge of river water onto sea ice.


    Google Scholar

  • Emmerton, C. A., Lesack, L. F. W. & Marsh, P. Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour. Res. 43, 114 (2007). This is a field study of carbon and nutrient exchanges between river floodwater and thermokarst lakes in the Mackenzie Delta, demonstrating sediment settling in the floodplain and organic matter enrichment sourced from lakes and the floodplain.


    Google Scholar

  • Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514518 (2020).


    Google Scholar

  • Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101104 (2017).


    Google Scholar

  • Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859863 (2017).


    Google Scholar

  • Dickinson, W. in New Perspectives in Basin Analysis (eds Kleinspehn, K. & Paola, C.) 177187 (Springer, 2011).

  • Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V. & Srensen, K. Chapter 1 An overview of the petroleum geology of the Arctic. Geol. Soc. Lond. Mem. 35, 115 (2011).


    Google Scholar

  • Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405412 (2003).


    Google Scholar

  • Korotayev, V. N. Geomorphology of river deltas on the Arctic coast of Siberia. Polar Geogr. Geol. 10, 139147 (1986).


    Google Scholar

  • Schwamborn, G., Rachold, V. & Grigoriev, M. N. Late Quaternary sedimentation history of the Lena Delta. Quat. Int. 89, 119134 (2002).


    Google Scholar

  • Lane, L. S. Canada Basin, Arctic Ocean: evidence against a rotational origin. Tectonics 16, 363387 (1997).


    Google Scholar

  • Whitehouse, P. L., Allen, M. B. & Milne, G. A. Glacial isostatic adjustment as a control on coastal processes: an example from the Siberian Arctic. Geology 35, 747750 (2007). This is a modelling study of glacio-isostatic rebound of Siberian deltas, demonstrating the effect of forebulge collapse on delta evolution.


    Google Scholar

  • Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).


    Google Scholar

  • Klemann, V., Heim, B., Bauch, H. A., Wetterich, S. & Opel, T. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the Last Glacial Maximum. Arktos 1, 18 (2015).


    Google Scholar

  • Aarseth, I. Western Norwegian fjord sediments: age, volume, stratigraphy, and role as temporary depository during glacial cycles. Mar. Geol. 143, 3953 (1997).


    Google Scholar

  • Bolshiyanov, D., Makarov, A. & Savelieva, L. Lena River delta formation during the Holocene. Biogeosciences 12, 579593 (2015).


    Google Scholar

  • Peltier, W., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid. Earth 120, 450487 (2014).


    Google Scholar

  • Baranskaya, A. V. et al. A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. 199, 188205 (2018).


    Google Scholar

  • Storms, J. E. A., de Winter, I. L., Overeem, I., Drijkoningen, G. G. & Lykke-Andersen, H. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quat. Sci. Rev. 35, 2950 (2012).


    Google Scholar

  • Overeem, I. & Syvitski, J. P. M. Experimental exploration of the stratigraphy of fjords fed by glaciofluvial systems. Geol. Soc. Lond. Spec. Publ. 344, 125142 (2010).


    Google Scholar

  • Fraser, C., Hill, P. R. & Allard, M. Morphology and facies architecture of a falling sea level strandplain, Umiujaq, Hudson Bay, Canada. Sedimentology 52, 141160 (2005).


    Google Scholar

  • ORegan, M. et al. Early Holocene sea level in the Canadian Beaufort Sea constrained by radiocarbon dates from a deep borehole in the Mackenzie Trough, Arctic Canada. Boreas 47, 11021117 (2018).


    Google Scholar

  • Hanna, A. J. M., Allison, M. A., Bianchi, T. S., Marcantonio, F. & Goff, J. A. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska. Cont. Shelf Res. 74, 1124 (2014).


    Google Scholar

  • Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111149 (2004).


    Google Scholar

  • Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: a numerical calculation. Quat. Res. 9, 265287 (1978).


    Google Scholar

  • National Oceanic and Atmospheric Administration. Sea level trends. NOAA https://tidesandcurrents.noaa.gov/sltrends/ (2021).

  • Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea level change along the Atlantic and Gulf coasts of North America. Earths Future 4, 440464 (2016).


    Google Scholar

  • Larour, E., Ivins, E. R. & Adhikari, S. Should coastal planners have concern over where land ice is melting? Sci. Adv. 3, e1700537 (2017).


    Google Scholar

  • Galloway, W. E. in Deltas, Models For Exploration (ed. Broussard, M. L.) 8798 (Houston Geological Society, 1975).

  • Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261282 (2007).


    Google Scholar

  • Geleynse, N. et al. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 302, 217226 (2011).


    Google Scholar

  • Orton, G. & Reading, H. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40, 475512 (1993).


    Google Scholar

  • Edmonds, D. A. & Slingerland, R. L. Significant effect of sediment cohesion on delta morphology. Nat. Geosci. 3, 105109 (2010).


    Google Scholar

  • Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties on deltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961982 (2014).


    Google Scholar

  • Shaw, J. B., Mohrig, D. & Whitman, S. K. The morphology and evolution of channels on the Wax Lake delta, Louisiana, USA. J. Geophys. Res. Earth Surf. 118, 15621584 (2013).


    Google Scholar

  • Wright, L. D. & Coleman, J. M. Mississippi River mouth processes: effluent dynamics and morphologic development. J. Geol. 82, 751778 (1974).


    Google Scholar

  • Overeem, I. et al. Small-scale stratigraphy in a large ramp delta: recent and Holocene sedimentation in the Volga Delta, Caspian Sea. Sediment. Geol. 159, 133157 (2003).


    Google Scholar

  • Coleman, J. M., Roberts, H. H. & Stone, G. W. Mississippi River delta: an overview. J. Coast. Res. 14, 698716 (1998).


    Google Scholar

  • Fagherazzi, S. Self-organization of tidal deltas. Proc. Natl Acad. Sci. USA 105, 1869218695 (2008).


    Google Scholar

  • Bhattacharya, J. P. in Facies Models Revisited (eds Posamentier, H. & Walker, R.) 237292 (Society for Sedimentary Geology, 2006).

  • Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y. & Kstner, K. Tidal controls on river delta morphology. Nat. Geosci. 10, 637645 (2017).


    Google Scholar

  • Sassi, M. G., Hoitink, A. J. F., De Brye, B. & Deleersnijder, E. Downstream hydraulic geometry of a tidally influenced river delta. J. Geophys. Res. Earth Surf. 117, 113 (2012).


    Google Scholar

  • Passalacqua, P., Lanzoni, S., Paola, C. & Rinaldo, A. Geomorphic signatures of deltaic processes and vegetation: the Ganges-Brahmaputra-Jamuna case study. J. Geophys. Res. Earth Surf. 118, 18381849 (2013).


    Google Scholar

  • Bhattacharya, J. P. & Giosan, L. Wave-influenced deltas: geomorphological implications for facies reconstruction. Sedimentology 50, 187210 (2003).


    Google Scholar

  • Rodriguez, A. B., Hamilton, M. D. & Anderson, J. B. Facies and evolution of the modern Brazos Delta, Texas: wave versus flood influence. J. Sediment. Res. 70, 283295 (2000).


    Google Scholar

  • Nienhuis, J. H., Ashton, A. D. & Giosan, L. What makes a delta wave-dominated? Geology 43, 511514 (2015).


    Google Scholar

  • Wright, L. D. & Coleman, J. M. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. Am. Assoc. Pet. Geol. Bull. 57, 370398 (1973).


    Google Scholar

  • Nienhuis, J. H., Ashton, A. D. & Giosan, L. Littoral steering of deltaic channels. Earth Planet. Sci. Lett. 453, 204214 (2016).


    Google Scholar

  • Wilson, C. A. & Goodbred, S. L. Jr Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Ann. Rev. Mar. Sci. 7, 6788 (2015).


    Google Scholar

  • Solomon, S. M. Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Marine Lett. 25, 127137 (2005).


    Google Scholar

  • Syvitski, J. P. M. & Kettner, A. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 369, 957975 (2011).


    Google Scholar

  • Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183204 (2002).


    Google Scholar

  • Cancet, M., Andersen, O. B., Lyard, F., Cotton, D. & Benveniste, J. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean. Adv. Space Res. 62, 13241343 (2018).


    Google Scholar

  • Kulikov, M. E., Medvedev, I. P. & Kondrin, A. T. Features of seasonal variability of tidal sea-level oscillations in the Russian Arctic seas. Russ. Meteorol. Hydrol. 45, 411421 (2020).


    Google Scholar

  • Osadchiev, A. et al. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 16, 781798 (2020).


    Google Scholar

  • Magritsky, D., Mikhailov, V., Korotaev, V. & Babich, D. Changes in hydrological regime and morphology of river deltas in the Russian Arctic. IAHS-AISH Proc. Rep. 358, 6779 (2013). This is one of very few studies of sediment distribution and trapping within Arctic delta distributary networks.


    Google Scholar

  • The GEBCO_2020 grid a continuous terrain model of the global oceans and land (NOC, 2020); https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/a29c5465-b138-234d-e053-6c86abc040b9/.

  • Overeem, I. & Syvitski, J. P. M. Shifting discharge peaks in Arctic rivers, 19772007. Geogr. Ann. Ser. A 92, 285296 (2010).


    Google Scholar

  • Beltaos, S. Onset of river ice breakup. Cold Reg. Sci. Technol. 25, 183196 (1997).


    Google Scholar

  • Beltaos, S. Threshold between mechanical and thermal breakup of river ice cover. Cold Reg. Sci. Technol. 37, 113 (2003).


    Google Scholar

  • Cooley, S. W. & Pavelsky, T. M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sens. Environ. 175, 310322 (2016).


    Google Scholar

  • Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 6973 (2020).


    Google Scholar

  • Arp, C. D., Jones, B. J., Liljedahl, A. K., Hinkel, K. & Welker, J. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes. Water Resour. Res. 51, 93799401 (2015).


    Google Scholar

  • Jeffries, M. O., Morris, K. & Liston, G. E. A method to determine lake depth and water availability on the North Slope of Alaska with spaceborne imaging radar and numerical ice growth modelling. Arctic 49, 367374 (1996).


    Google Scholar

  • Goulding, H., Prowse, T. & Beltaos, S. Spatial and temporal patterns of break-up and ice-jam flooding in the Mackenzie Delta, NWT. Hydrol. Process. 23, 26542670 (2009).


    Google Scholar

  • Vulis, L. et al. Channel network control on seasonal lake area dynamics in Arctic deltas. Geophys. Res. Lett. 47, e2019GL086710 (2020).


    Google Scholar

  • Dean, K. G., Stringer, W. J., Ahlnas, K., Searcy, C. & Weingartner, T. The influence of river discharge on the thawing of sea ice, Mackenzie River delta: albedo and temperature analyses. Polar Res. 13, 8394 (1994).


    Google Scholar

  • Alkire, M. B. & Trefry, J. H. Transport of spring floodwater from rivers under ice to the Alaskan Beaufort Sea. J. Geophys. Res. Ocean. 111, 112 (2006).


    Google Scholar

  • Wessells, S., Reimnitz, E., Barnes, P. & Kempema, E. Drift ice as a geologic agent (USGS, 1993). An important USGS documentary film on field observations and laboratory experiments on icesediment transport and interactions.

  • Bareiss, J., Eicken, H., Helbig, A. & Martin, T. Impact of river discharge and regional climatology on the decay of sea ice in the laptev sea during spring and early summer. Arct. Antarct. Alp. Res. 31, 214229 (1999).


    Google Scholar

  • Nghiem, S., Hall, D. K., Rigor, I., Li, P. & Neumann, G. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett. 41, 873879 (2014).


    Google Scholar

  • Barnhart, K. R. et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth Surf. 119, 11551179 (2014).


    Google Scholar

  • Ravens, T. M., Jones, B. M., Zhang, J., Arp, C. D. & Schmutz, J. A. Process-based coastal erosion modeling for Drew Point, North Slope, Alaska. J. Waterw. Port Coastal Ocean Eng. 138, 122130 (2012).


    Google Scholar

  • Stettner, S. et al. Monitoring inter- and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series. Remote Sens. 10, 51 (2018).


    Google Scholar

  • Hoekov, L. et al. Attenuation of ocean surface waves in pancake and frazil sea ice along the coast of the Chukchi Sea. J. Geophys. Res. Ocean. 125, e2020JC016746 (2020).


    Google Scholar

  • Chikita, K. A. et al. in Origin and Evolution of Natural Diversity International Symposium Proceedings (HUSCAP, 2009).

  • Robert, A. & Tran, T. Mean and turbulent flow fields in a simulated ice-covered channel with a gravel bed: some laboratory observations. Earth Surf. Process. Landf. 37, 951956 (2012).


    Google Scholar

  • Lotsari, E. et al. Sub-arctic river bank dynamics and driving processes during the open-channel flow period. Earth Surf. Process. Landf. 45, 11981216 (2020).


    Google Scholar

  • Sui, J., Wang, J., He, Y. & Krol, F. Velocity profiles and incipient motion of frazil particles under ice cover. Int. J. Sediment. Res. 25, 3951 (2010).


    Google Scholar

  • Lamb, E. & Toniolo, H. Initial quantification of suspended sediment loads for three Alaska North Slope rivers. Water 8, 111 (2016).


    Google Scholar

  • Toniolo, H. et al. Hydraulic characteristics and suspended sediment loads during spring breakup in several streams located on the National Petroleum Reserve in Alaska, USA. Nat. Resour. 04, 220228 (2013).


    Google Scholar

  • Plug, L. J. & West, J. J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J. Geophys. Res. Earth Surf. 114, 118 (2009).


    Google Scholar

  • Grosse, G., Jones, B. & Arp, C. Thermokarst lakes, drainage, and drained basins. Treat. Geomorphol. 8, 325353 (2013). This is a comprehensive review of thermokarst lake formation and evolution.


    Google Scholar

  • Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 22, 115 (2008).


    Google Scholar

  • Marsh, P. et al. in 17th International Northern Research Basins Symposium Workshop (Northern Research Basins Symposium, 2009).

  • Lesack, L. F. W. & Marsh, P. Lengthening plus shortening of river-to-lake connection times in the Mackenzie River Delta respectively via two global change mechanisms along the arctic coast. Geophys. Res. Lett. 34, 16 (2007).


    Google Scholar

  • Vulis, L., Tejedor, A., Zaliapin, I., Rowland, J. C. & Foufoula-Georgiou, E. Climate signatures on lake and wetland size distributions in Arctic deltas. Geophys. Res. Lett. 48, e2021GL094437 (2021).


    Google Scholar

  • Normandin, C. et al. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data. Hydrol. Earth Syst. Sci. 22, 15431561 (2018).


    Google Scholar

  • Forbes, D. L., Craymer, M. R. & Whalen, D. J. R. Subsidence and inundation of a large Arctic permafrost delta. In Canadian Quaternary Association Conference (2015).

  • Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Nutrient and organic matter patterns across the Mackenzie River, estuary and shelf during the seasonal recession of sea-ice. J. Mar. Syst. 74, 741755 (2008).


    Google Scholar

  • Cunada, C. L., Lesack, L. F. W. & Tank, S. E. Methane emission dynamics among CO2-absorbing and thermokarst lakes of a great Arctic delta. Biogeochemistry 156, 375399 (2021).


    Google Scholar

  • Kempema, E. W. & Barnes, P. W. Anchor ice, seabed freezing, and sediment dynamics in shallow Arctic seas. J. Geophys. Res. 92, 671678 (1987).


    Google Scholar

  • Kempema, E. W., Reimnitz, E., Clayton, J. R. & Payne, J. R. Interactions of frazil and anchor ice with sedimentary particles in a flume. Cold Reg. Sci. Technol. 21, 137149 (1993).


    Google Scholar

  • Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 8487 (2015). Data analysis of the source-to-sink carbon pathway and storage in the prodelta of the Mackenzie Delta, pointing to the importance of the submarine domain as a hotspot of carbon sequestration.


    Google Scholar

  • Rowland, J. & Stauffer, S. Classified channel masks of portions of 13 rivers across the Arctic and areas of floodplain erosion and accretion ranging from 1973 to 2016. ESS-DIVE https://doi.org/10.15485/1571525 (2019).

  • Debolskaya, E. I. A mathematical model of channel deformations in permafrost zone rivers. Water Resour. 41, 512521 (2014).


    Google Scholar

  • Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 23242344 (2019).


    Google Scholar

  • Vesakoski, J. M. et al. Arctic Mackenzie Delta channel planform evolution during 19832013 utilising Landsat data and hydrological time series. Hydrol. Process. 31, 39793995 (2017).


    Google Scholar

  • Payne, C., Panda, S. & Prakash, A. Remote sensing of river erosion on the Colville River, North Slope Alaska. Remote Sens. 10, 397 (2018).


    Google Scholar

  • Lantuit, H. et al. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383400 (2012).


    Google Scholar

  • Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 7, 67 (2017).


    Google Scholar

  • Gibbs, A. E. & Richmond, B. M. National assessment of shoreline change summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska. USGS Open File Rep. 20171107, 121 (2017).


    Google Scholar

  • Wobus, C. et al. Thermal erosion of a permafrost coastline: improving process-based models using time-lapse photography. Arct. Antarct. Alp. Res. 43, 474484 (2011).


    Google Scholar

  • Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, 15 (2009).


    Google Scholar

  • Ping, C. L. et al. Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline. J. Geophys. Res. Biogeosci. 116, 112 (2011).


    Google Scholar

  • Fuchs, M. et al. Rapid fluvio-thermal erosion of a yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. 8, 118 (2020).


    Google Scholar

  • Jenner, K. A. & Hill, P. R. Recent, Arctic deltaic sedimentation: Olivier Islands, Mackenzie Delta, North-west Territories, Canada. Sedimentology 45, 9871004 (1998).


    Google Scholar

  • Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comput. Geosci. 53, 8093 (2013).


    Google Scholar

  • Chawla, A., Spindler, D. M. & Tolman, H. L. Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Model. 70, 189206 (2013).


    Google Scholar

  • Jerolmack, D. J. & Swenson, J. B. Scaling relationships and evolution of distributary networks on wave-influenced deltas. Geophys. Res. Lett. 34, 15 (2007).


    Google Scholar

  • Patruno, S. & Helland-Hansen, W. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth Sci. Rev. 185, 202233 (2018).


    Google Scholar

  • Donchyts, G. et al. Earths surface water change over the past 30 years. Nat. Clim. Chang. 6, 810813 (2016).


    Google Scholar

  • Fyfe, J. C. et al. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Sci. Rep. 3, 17 (2013).


    Google Scholar

  • Moon, T. A. et al. The expanding footprint of rapid Arctic change. Earths Future 7, 212218 (2019).


    Google Scholar

  • Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, 25 (2006).


    Google Scholar

  • Bring, A. et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. G 121, 621649 (2016).


    Google Scholar

  • Burn, C. R. & Kokelj, S. V. The environment and permafrost of the Mackenzie Delta area. Permafr. Periglac. Process. 20, 83105 (2009).


    Google Scholar

  • Arp, C. D., Jones, B. M., Schmutz, J. A., Urban, F. E. & Jorgenson, M. T. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline. Polar Biol. 33, 16291640 (2010).


    Google Scholar

  • Herman-Mercer, N., Schuster, P. & Maracle, K. Indigenous observations of climate change in the Lower Yukon River Basin, Alaska. Hum. Organ. 70, 244252 (2011).


    Google Scholar

  • Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science. 298, 21712173 (2002).


    Google Scholar

  • Dankers, R. & Middelkoop, H. River discharge and freshwater runoff to the Barents Sea under present and future climate conditions. Clim. Change 87, 131153 (2008).


    Google Scholar

  • Vernon, C. L. et al. Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7, 599614 (2013).


    Google Scholar

  • Box, J. E. et al. Global sea-level contribution from Arctic land ice: 19712017. Environ. Res. Lett. 13, 125012 (2018).


    Google Scholar

  • National Snow & Ice Data Center. Charctic interactive sea ice graph. NSIDC https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/ (2020).

  • Stopa, J. E., Ardhuin, F. & Girard-Ardhuin, F. Wave climate in the Arctic 19922014: seasonality and trends. Cryosphere 10, 16051629 (2016).


    Google Scholar

  • Waseda, T. et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Sci. Rep. 8, 4489 (2018).

  • Davy, R. & Outten, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 80478068 (2020).


    Google Scholar

  • Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323330 (2002).


    Google Scholar

  • Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).


    Google Scholar

  • Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Chang. 6, 280285 (2015).


    Google Scholar

  • Casas-Prat, M. & Wang, X. L. Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion. J. Geophys. Res. Oceans 125, e2019JC015745 (2020). This paper presents projections of future Arctic Ocean wave conditions using the well established WaveWatch III model, which shows a threefold increase in wave energy over the twenty-first century.


    Google Scholar

  • Antonova, S. et al. Thaw subsidence of a yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X Interferometry. Remote Sens. 10, 494 (2018).


    Google Scholar

  • ONeill, B., Smith, S. L. & Duchesne, C. in 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (American Society of Civil Engineers, 2019).

  • Jorgenson, T. M., Frost, G. V. & Dissing, D. Drivers of landscape changes in coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 127 (2018).


    Google Scholar

  • Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2, 453457 (2012).


    Google Scholar

  • Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 2741 (2016).


    Google Scholar

  • Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 5762 (2018).


    Google Scholar

  • Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).


    Google Scholar

  • Lasserre, F. Simulations of shipping along Arctic routes: comparison, analysis and economic perspectives. Polar Rec. 51, 239259 (2015).


    Google Scholar

  • Eguluz, V. M., Fernndez-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 20102014. Sci. Rep. 6, 38 (2016).


    Google Scholar

  • Gulas, S., Downton, M., DSouza, K., Hayden, K. & Walker, T. R. Declining Arctic Ocean oil and gas developments: opportunities to improve governance and environmental pollution control. Mar. Policy 75, 5361 (2017).


    Google Scholar

  • Bendixen, M. et al. Promises and perils of sand exploitation in Greenland. Nat. Sustain. 2, 98104 (2019).


    Google Scholar

  • Wenzel, G. W. Canadian Inuit subsistence and ecological instability if the climate changes, must the Inuit? Polar Res. 28, 8999 (2009).


    Google Scholar

  • Zeller, D., Booth, S., Pakhomov, E., Swartz, W. & Pauly, D. Arctic fisheries catches in Russia, USA, and Canada: baselines for neglected ecosystems. Polar Biol. 34, 955973 (2011).


    Google Scholar

  • Pisaric, M. F. J. et al. Impacts of a recent storm surge on an Arctic delta ecosystem examined in the context of the last millennium. Proc. Natl Acad. Sci. USA 108, 89608965 (2011).


    Google Scholar

  • Notz, D. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).


    Google Scholar

  • Jafarov, E. E., Marchenko, S. S. & Romanovsky, V. E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere 6, 613624 (2012).


    Google Scholar

  • McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 201719903 (2018).


    Google Scholar

  • Clow, G. D. CVPM 1.1: a flexible heat-transfer modeling system for permafrost. Geosci. Model. Dev. 11, 48894908 (2018).


    Google Scholar

  • Overeem, I. et al. A modeling toolbox for permafrost landscapes. Eos https://doi.org/10.1029/2018EO105155 (2018).

  • Wang, K., Jafarov, E. & Overeem, I. Sensitivity evaluation of the Kudryavtsev permafrost model. Sci. Total Environ. 720, 137538 (2020).


    Google Scholar

  • Matell, N. et al. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate. Comput. Geosci. 53, 6979 (2013).


    Google Scholar

  • Dupeyrat, L. et al. Effects of ice content on the thermal erosion of permafrost: implications for coastal and fluvial erosion. Permafr. Periglac. Process. 22, 179187 (2011).


    Google Scholar

  • Kobayashi, N., Vidrine, J. C., Nairn, R. B. & Soloman, S. M. Erosion of frozen cliffs due to storm surge on Beaufort Sea coast. J. Coast. Res. 15, 332344 (1999).


    Google Scholar

  • Baar, A. W., Boechat Albernaz, M., van Dijk, W. M. & Kleinhans, M. G. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat. Commun. 10, 4903 (2019).


    Google Scholar

  • Shen, H. H. Modelling ocean waves in ice-covered seas. Appl. Ocean Res. 83, 3036 (2019).


    Google Scholar

  • Hlse, P. & Bentley, S. J. A 210Pb sediment budget and granulometric record of sediment fluxes in a subarctic deltaic system: the Great Whale River, Canada. Estuar. Coast. Shelf Sci. 109, 4152 (2012).


    Google Scholar

  • Rogers, W. E. Implementation of sea ice in the wave model SWAN (Naval Research Laboratory, 2019).

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the worlds large river systems. Hydrol. Process. 27, 21712186 (2013).


    Google Scholar

  • Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis (National Geophysical Data Center, 2009).

  • US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).

  • Government of Canada. Historical hydrometric data. GC https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (2021).

  • Carson, M. A., Jasper, J. N. & Conly, F. M. Magnitude and sources of sediment input to the Mackenzie Delta, Northwest Territories, 197494. Arctic 51, 116124 (1998).


    Google Scholar

  • Lesack, L. F. W., Marsh, P., Hicks, F. E. & Forbes, D. L. Breakup in a large Arctic delta. Geophys. Res. Lett. 41, 15601566 (2014).


    Google Scholar

  • National Weather Service. River breakup database. NOAA https://www.weather.gov/aprfc/breakupDB?site=488 (2020).

  • Nienhuis, J. H. & van de Wal, R. S. W. Projections of global delta land loss from sea-level rise in the 21st century. Geophys. Res. Lett. 48, 19 (2021).


    Google Scholar

  • Kroon, A. et al. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland. Ambio 46, 132145 (2017). This paper investigates interacting process controls on several deltas in East Greenland, demonstrating the dominance of fluvial processes and the seasonality of wave-driven sediment transport.


    Google Scholar

  • Corner, G. D. in Incised Valleys in Time and Space Vol. 85 (eds Dalrymple, R. W., Leckie, D. A. & Tilan, R. W.) 161178 (Society for Sedimentary Geology, 2006).

  • Hansen, L. Deltaic infill of a deglaciated arctic fjord, East Greenland: sedimentary facies and sequence stratigraphy. J. Sediment. Res. 74, 422437 (2004).


    Google Scholar

  • Bendixen, M. & Kroon, A. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surf. Process. Landf. 42, 12271237 (2017).


    Google Scholar

  • Carrivick, J. L. & Quincey, D. J. Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Glob. Planet. Change 116, 156163 (2014).


    Google Scholar

  • North Slope Science Initiative. 2016 Colville River Delta spring breakup monitoring and hydrological assessment (NSSI, 2016).

  • How, P. et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 11, 4481 (2021).


    Google Scholar

  • Mernild, S. H. & Hasholt, B. Observed runoff, jokulhlaups and suspended sediment load from the Greenland ice sheet at Kangerlussuaq, West Greenland, 2007 and 2008. J. Glaciol. 55, 855858 (2009).


    Google Scholar

  • Mikkelsen, A. B., Hasholt, B., Knudsen, N. T. & Nielsen, M. H. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland. Hydrol. Res. 44, 5867 (2013).


    Google Scholar

  • Russell, A. J., Carrivick, J. L., Ingeman-Nielsen, T., Yde, J. C. & Williams, M. A new cycle of jkulhlaups at Russell Glacier, Kangerlussuaq, West Greenland. J. Glaciol. 57, 238246 (2011).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.