Forbes, D. L. in Coasts and Estuaries Ch. 8 (eds Wolanski, E. et al.) 123147 (Elsevier, 2019). This is a comprehensive review of process studies in the Mackenzie Delta and Canadian fjord deltas.
Stanley, D. J. & Warne, A. Holocene sea level change and early human utilization of deltas. GSA Today 7, 17 (1995).
Mason, O. & Friesen, M. Out of the Cold: Archeology on the Arctic Rim of North America (The Society for American Archeology, 2018).
Bobrovitskaya, N. N., Zubkova, C. & Meade, R. H. Discharges and yields of suspended sediment in the Ob and Yenisey Rivers of Siberia. IAHS-AISH Publ. 236, 115123 (1996).
Vrsmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169190 (2003).
Lehner, B. et al. High-resolution mapping of the worlds reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494502 (2011).
Walker, H. J. Arctic deltas. J. Coast. Res. 14, 718738 (1998). This classic paper reviews Arctic deltas with lessons learned from 30 years of field studies in the Colville River delta.
Tessler, Z. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638643 (2013).
Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681686 (2009).
Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 1335 (2015).
Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 65736593 (2014).
Gordeev, V. V. Fluvial sediment flux to the Arctic Ocean. Geomorphology 80, 94104 (2006).
Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 57155737 (2010).
Whitefield, J., Winsor, P., McClelland, J. & Menemenlis, D. A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean. Model. 88, 115 (2015).
McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 30, 11451165 (2016). This paper presents POC and nitrogen fluxes for the Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma deltas from 9 years of field campaigns covering different seasons.
Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest Arctic rivers. Glob. Biogeochem. Cycles 21, 19 (2007).
Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 20002016 at 1 km2 scale. Earth Sci. Rev. 193, 299316 (2019).
Bianchi, T. S. & Allison, M. A. Large-river delta-front estuaries as natural recorders of global environmental change. Proc. Natl Acad. Sci. USA 106, 80858092 (2009).
Shields, M. R. et al. Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 10, 846851 (2017).
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450453 (2015).
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Parmentier, F. J. W. et al. A synthesis of the Arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46, 5369 (2017).
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171179 (2015).
Vonk, J. E. et al. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochim. Cosmochim. Acta 171, 100120 (2015).
Fuchs, M. et al. Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. Arktos 4, 118 (2018).
Schirrmeister, L. et al. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands a review. Quat. Int. 241, 325 (2011).
Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 7586 (2017).
Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C. & Dise, N. B. Methane emissions from tundra environments YukonKuskokwim Delta, Alaska. J. Geophys. Res. 97, 16,64516,660 (1992).
Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 38 (2017).
Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Glob. Biogeochem. Cycles 16, 114 (2002). This is a comprehensive synthesis of observational data on fluvial sediment fluxes for the Yenisei, Lena, Ob, Mackenzie, Yukon, Pechora, Kolyma and Severnaya Dvina rivers, illustrating their relatively low sediment loads compared to rivers in lower latitudes.
Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, 117 (2021).
Leffingwell, E. K. The Canning River region, northern Alaska. USGS Prof. Pap. 109, 1251 (1919).
Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. USGS Prof. Pap. 1068, 119 (1978).
Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 13491359 (2003). This paper presents theoretical model development and field data of bank erosion in permafrost-affected rivers.
Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in central Siberia. Geophys. Res. Lett. 34, 14 (2007).
Walker, J., Arnborg, L. & Peippo, J. Riverbank erosion in the Colville Delta. Alaska. Geogr. Ann. 69, 6170 (1987). This paper presents observational data on slow rates of river bank erosion in different substrates and main versus distributary delta channels.
Lauzon, R., Piliouras, A. & Rowland, J. C. Ice and permafrost effects on delta morphology and channel dynamics. Geophys. Res. Lett. 46, 65746582 (2019). This numerical modelling study investigates the effects of bank erodability on Arctic delta network topology.
Lim, Y. J., Levy, J. S., Goudge, T. A. & Kim, W. Ice cover as a control on the morphodynamics and stratigraphy of Arctic deltas. Geology 47, 399402 (2019).
Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (AMAP, 2017); https://www.amap.no/documents/download/2987/inline.
Hanna, E. et al. Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, 13361352 (2020).
Turetsky, M. R. Permafrost collapse is accelerating carbon release. Nature 569, 3234 (2019).
Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost a review. Vadose Zone J. 15, 120 (2016).
Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).
Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 17771799 (2014). The mapping of the onset of open water and its duration along the entire Arctic coast from remote-sensing data shows a 1.53-fold expansion of sea-ice-free conditions over the past three decades.
Hill, P. R., Blasco, S., Harper, J. & Fissel, D. Sedimentation on the canadian beaufort shelf. Continental Shelf Res. 11, 821842 (1991).
Hill, P. R., Peter Lewis, C., Desmarais, S., Kauppaymuthoo, V. & Rais, H. The Mackenzie Delta: sedimentary processes and facies of a high-latitude, fine-grained delta. Sedimentology 48, 10471078 (2001).
Naidu, A. S. & Mowatt, T. C. in Deltas: Models for Exploration (ed. Broussard, M. L.) 283309 (Houston Geological Society, 1975).
Dupre, W. R. & Thompson, R. The Yukon delta: a model for deltaic sedimentation in an ice-dominated environment. Proc. Annu. Offshore Technol. Conf. 5, 657664 (1979). This classic description of delta processes in the Arctic setting was the first to propose using ice dominance as a classification criterion for high-latitude deltas.
Arnborg, L. & Walker, J. Suspended load in the Colville River, Alaska, 1962. Geogr. Ann. 49, 131144 (1966).
Walker, H. J. in Symposium on the Hydrology of Deltas 209219 (IAHS, 1970).
Walker, H. J. & Hudson, P. F. Hydrologic and geomorphic processes in the Colville River delta, Alaska. Geomorphology 56, 291303 (2003).
Dupre, W. Yukon Delta Coastal Processes Study (OSTI, 1980); https://www.osti.gov/biblio/5793121-yukon-delta-coastal-processes-study-final-report.
Nelson, C. H., Dupre, W., Fleld, M. & Howard, J. D. Variations in sand body types on the Eastern Bering Sea epicontinental shelf. Geol. Mijnbouw 61, 3748 (1982).
Are, F. & Reimnitz, E. An overview of the Lena River Delta setting: geology, tectonics, geomorphology, and hydrology. J. Coast. Res. 16, 10831093 (2000). This is a synthesis paper on the long-term evolution of the Lena Delta.
Reimnitz, E. Interactions of river discharge with sea ice in proximity of Arctic deltas: a review. Polarforschung 70, 123134 (2000).
Reimnitz, E. & Bruder, K. River discharge into an ice-covered ocean and related sediment dispersal, Beaufort Sea, coast of Alaska. Geol. Soc. Am. Bull. 83, 861866 (1972).
Piliouras, A. & Rowland, J. C. Arctic river delta morphologic variability and implications for riverine fluxes to the coast. J. Geophys. Res. Earth Surf. 125, 120 (2020).
Kasper, J. L. & Weingartner, T. J. The spreading of a buoyant plume beneath a landfast ice cover. J. Phys. Oceanogr. 45, 478494 (2015). This process modelling study uses the Regional Ocean Model System to highlight the effects of sub-ice discharge of river water onto sea ice.
Emmerton, C. A., Lesack, L. F. W. & Marsh, P. Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour. Res. 43, 114 (2007). This is a field study of carbon and nutrient exchanges between river floodwater and thermokarst lakes in the Mackenzie Delta, demonstrating sediment settling in the floodplain and organic matter enrichment sourced from lakes and the floodplain.
Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514518 (2020).
Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101104 (2017).
Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859863 (2017).
Dickinson, W. in New Perspectives in Basin Analysis (eds Kleinspehn, K. & Paola, C.) 177187 (Springer, 2011).
Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V. & Srensen, K. Chapter 1 An overview of the petroleum geology of the Arctic. Geol. Soc. Lond. Mem. 35, 115 (2011).
Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405412 (2003).
Korotayev, V. N. Geomorphology of river deltas on the Arctic coast of Siberia. Polar Geogr. Geol. 10, 139147 (1986).
Schwamborn, G., Rachold, V. & Grigoriev, M. N. Late Quaternary sedimentation history of the Lena Delta. Quat. Int. 89, 119134 (2002).
Lane, L. S. Canada Basin, Arctic Ocean: evidence against a rotational origin. Tectonics 16, 363387 (1997).
Whitehouse, P. L., Allen, M. B. & Milne, G. A. Glacial isostatic adjustment as a control on coastal processes: an example from the Siberian Arctic. Geology 35, 747750 (2007). This is a modelling study of glacio-isostatic rebound of Siberian deltas, demonstrating the effect of forebulge collapse on delta evolution.
Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).
Klemann, V., Heim, B., Bauch, H. A., Wetterich, S. & Opel, T. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the Last Glacial Maximum. Arktos 1, 18 (2015).
Aarseth, I. Western Norwegian fjord sediments: age, volume, stratigraphy, and role as temporary depository during glacial cycles. Mar. Geol. 143, 3953 (1997).
Bolshiyanov, D., Makarov, A. & Savelieva, L. Lena River delta formation during the Holocene. Biogeosciences 12, 579593 (2015).
Peltier, W., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid. Earth 120, 450487 (2014).
Baranskaya, A. V. et al. A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. 199, 188205 (2018).
Storms, J. E. A., de Winter, I. L., Overeem, I., Drijkoningen, G. G. & Lykke-Andersen, H. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quat. Sci. Rev. 35, 2950 (2012).
Overeem, I. & Syvitski, J. P. M. Experimental exploration of the stratigraphy of fjords fed by glaciofluvial systems. Geol. Soc. Lond. Spec. Publ. 344, 125142 (2010).
Fraser, C., Hill, P. R. & Allard, M. Morphology and facies architecture of a falling sea level strandplain, Umiujaq, Hudson Bay, Canada. Sedimentology 52, 141160 (2005).
ORegan, M. et al. Early Holocene sea level in the Canadian Beaufort Sea constrained by radiocarbon dates from a deep borehole in the Mackenzie Trough, Arctic Canada. Boreas 47, 11021117 (2018).
Hanna, A. J. M., Allison, M. A., Bianchi, T. S., Marcantonio, F. & Goff, J. A. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska. Cont. Shelf Res. 74, 1124 (2014).
Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111149 (2004).
Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: a numerical calculation. Quat. Res. 9, 265287 (1978).
National Oceanic and Atmospheric Administration. Sea level trends. NOAA https://tidesandcurrents.noaa.gov/sltrends/ (2021).
Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea level change along the Atlantic and Gulf coasts of North America. Earths Future 4, 440464 (2016).
Larour, E., Ivins, E. R. & Adhikari, S. Should coastal planners have concern over where land ice is melting? Sci. Adv. 3, e1700537 (2017).
Galloway, W. E. in Deltas, Models For Exploration (ed. Broussard, M. L.) 8798 (Houston Geological Society, 1975).
Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261282 (2007).
Geleynse, N. et al. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 302, 217226 (2011).
Orton, G. & Reading, H. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40, 475512 (1993).
Edmonds, D. A. & Slingerland, R. L. Significant effect of sediment cohesion on delta morphology. Nat. Geosci. 3, 105109 (2010).
Caldwell, R. L. & Edmonds, D. A. The effects of sediment properties on deltaic processes and morphologies: a numerical modeling study. J. Geophys. Res. Earth Surf. 119, 961982 (2014).
Shaw, J. B., Mohrig, D. & Whitman, S. K. The morphology and evolution of channels on the Wax Lake delta, Louisiana, USA. J. Geophys. Res. Earth Surf. 118, 15621584 (2013).
Wright, L. D. & Coleman, J. M. Mississippi River mouth processes: effluent dynamics and morphologic development. J. Geol. 82, 751778 (1974).
Overeem, I. et al. Small-scale stratigraphy in a large ramp delta: recent and Holocene sedimentation in the Volga Delta, Caspian Sea. Sediment. Geol. 159, 133157 (2003).
Coleman, J. M., Roberts, H. H. & Stone, G. W. Mississippi River delta: an overview. J. Coast. Res. 14, 698716 (1998).
Fagherazzi, S. Self-organization of tidal deltas. Proc. Natl Acad. Sci. USA 105, 1869218695 (2008).
Bhattacharya, J. P. in Facies Models Revisited (eds Posamentier, H. & Walker, R.) 237292 (Society for Sedimentary Geology, 2006).
Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y. & Kstner, K. Tidal controls on river delta morphology. Nat. Geosci. 10, 637645 (2017).
Sassi, M. G., Hoitink, A. J. F., De Brye, B. & Deleersnijder, E. Downstream hydraulic geometry of a tidally influenced river delta. J. Geophys. Res. Earth Surf. 117, 113 (2012).
Passalacqua, P., Lanzoni, S., Paola, C. & Rinaldo, A. Geomorphic signatures of deltaic processes and vegetation: the Ganges-Brahmaputra-Jamuna case study. J. Geophys. Res. Earth Surf. 118, 18381849 (2013).
Bhattacharya, J. P. & Giosan, L. Wave-influenced deltas: geomorphological implications for facies reconstruction. Sedimentology 50, 187210 (2003).
Rodriguez, A. B., Hamilton, M. D. & Anderson, J. B. Facies and evolution of the modern Brazos Delta, Texas: wave versus flood influence. J. Sediment. Res. 70, 283295 (2000).
Nienhuis, J. H., Ashton, A. D. & Giosan, L. What makes a delta wave-dominated? Geology 43, 511514 (2015).
Wright, L. D. & Coleman, J. M. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. Am. Assoc. Pet. Geol. Bull. 57, 370398 (1973).
Nienhuis, J. H., Ashton, A. D. & Giosan, L. Littoral steering of deltaic channels. Earth Planet. Sci. Lett. 453, 204214 (2016).
Wilson, C. A. & Goodbred, S. L. Jr Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Ann. Rev. Mar. Sci. 7, 6788 (2015).
Solomon, S. M. Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Marine Lett. 25, 127137 (2005).
Syvitski, J. P. M. & Kettner, A. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 369, 957975 (2011).
Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183204 (2002).
Cancet, M., Andersen, O. B., Lyard, F., Cotton, D. & Benveniste, J. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean. Adv. Space Res. 62, 13241343 (2018).
Kulikov, M. E., Medvedev, I. P. & Kondrin, A. T. Features of seasonal variability of tidal sea-level oscillations in the Russian Arctic seas. Russ. Meteorol. Hydrol. 45, 411421 (2020).
Osadchiev, A. et al. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 16, 781798 (2020).
Magritsky, D., Mikhailov, V., Korotaev, V. & Babich, D. Changes in hydrological regime and morphology of river deltas in the Russian Arctic. IAHS-AISH Proc. Rep. 358, 6779 (2013). This is one of very few studies of sediment distribution and trapping within Arctic delta distributary networks.
The GEBCO_2020 grid a continuous terrain model of the global oceans and land (NOC, 2020); https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/a29c5465-b138-234d-e053-6c86abc040b9/.
Overeem, I. & Syvitski, J. P. M. Shifting discharge peaks in Arctic rivers, 19772007. Geogr. Ann. Ser. A 92, 285296 (2010).
Beltaos, S. Onset of river ice breakup. Cold Reg. Sci. Technol. 25, 183196 (1997).
Beltaos, S. Threshold between mechanical and thermal breakup of river ice cover. Cold Reg. Sci. Technol. 37, 113 (2003).
Cooley, S. W. & Pavelsky, T. M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery. Remote Sens. Environ. 175, 310322 (2016).
Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 6973 (2020).
Arp, C. D., Jones, B. J., Liljedahl, A. K., Hinkel, K. & Welker, J. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes. Water Resour. Res. 51, 93799401 (2015).
Jeffries, M. O., Morris, K. & Liston, G. E. A method to determine lake depth and water availability on the North Slope of Alaska with spaceborne imaging radar and numerical ice growth modelling. Arctic 49, 367374 (1996).
Goulding, H., Prowse, T. & Beltaos, S. Spatial and temporal patterns of break-up and ice-jam flooding in the Mackenzie Delta, NWT. Hydrol. Process. 23, 26542670 (2009).
Vulis, L. et al. Channel network control on seasonal lake area dynamics in Arctic deltas. Geophys. Res. Lett. 47, e2019GL086710 (2020).
Dean, K. G., Stringer, W. J., Ahlnas, K., Searcy, C. & Weingartner, T. The influence of river discharge on the thawing of sea ice, Mackenzie River delta: albedo and temperature analyses. Polar Res. 13, 8394 (1994).
Alkire, M. B. & Trefry, J. H. Transport of spring floodwater from rivers under ice to the Alaskan Beaufort Sea. J. Geophys. Res. Ocean. 111, 112 (2006).
Wessells, S., Reimnitz, E., Barnes, P. & Kempema, E. Drift ice as a geologic agent (USGS, 1993). An important USGS documentary film on field observations and laboratory experiments on icesediment transport and interactions.
Bareiss, J., Eicken, H., Helbig, A. & Martin, T. Impact of river discharge and regional climatology on the decay of sea ice in the laptev sea during spring and early summer. Arct. Antarct. Alp. Res. 31, 214229 (1999).
Nghiem, S., Hall, D. K., Rigor, I., Li, P. & Neumann, G. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett. 41, 873879 (2014).
Barnhart, K. R. et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth Surf. 119, 11551179 (2014).
Ravens, T. M., Jones, B. M., Zhang, J., Arp, C. D. & Schmutz, J. A. Process-based coastal erosion modeling for Drew Point, North Slope, Alaska. J. Waterw. Port Coastal Ocean Eng. 138, 122130 (2012).
Stettner, S. et al. Monitoring inter- and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series. Remote Sens. 10, 51 (2018).
Hoekov, L. et al. Attenuation of ocean surface waves in pancake and frazil sea ice along the coast of the Chukchi Sea. J. Geophys. Res. Ocean. 125, e2020JC016746 (2020).
Chikita, K. A. et al. in Origin and Evolution of Natural Diversity International Symposium Proceedings (HUSCAP, 2009).
Robert, A. & Tran, T. Mean and turbulent flow fields in a simulated ice-covered channel with a gravel bed: some laboratory observations. Earth Surf. Process. Landf. 37, 951956 (2012).
Lotsari, E. et al. Sub-arctic river bank dynamics and driving processes during the open-channel flow period. Earth Surf. Process. Landf. 45, 11981216 (2020).
Sui, J., Wang, J., He, Y. & Krol, F. Velocity profiles and incipient motion of frazil particles under ice cover. Int. J. Sediment. Res. 25, 3951 (2010).
Lamb, E. & Toniolo, H. Initial quantification of suspended sediment loads for three Alaska North Slope rivers. Water 8, 111 (2016).
Toniolo, H. et al. Hydraulic characteristics and suspended sediment loads during spring breakup in several streams located on the National Petroleum Reserve in Alaska, USA. Nat. Resour. 04, 220228 (2013).
Plug, L. J. & West, J. J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J. Geophys. Res. Earth Surf. 114, 118 (2009).
Grosse, G., Jones, B. & Arp, C. Thermokarst lakes, drainage, and drained basins. Treat. Geomorphol. 8, 325353 (2013). This is a comprehensive review of thermokarst lake formation and evolution.
Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 22, 115 (2008).
Marsh, P. et al. in 17th International Northern Research Basins Symposium Workshop (Northern Research Basins Symposium, 2009).
Lesack, L. F. W. & Marsh, P. Lengthening plus shortening of river-to-lake connection times in the Mackenzie River Delta respectively via two global change mechanisms along the arctic coast. Geophys. Res. Lett. 34, 16 (2007).
Vulis, L., Tejedor, A., Zaliapin, I., Rowland, J. C. & Foufoula-Georgiou, E. Climate signatures on lake and wetland size distributions in Arctic deltas. Geophys. Res. Lett. 48, e2021GL094437 (2021).
Normandin, C. et al. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data. Hydrol. Earth Syst. Sci. 22, 15431561 (2018).
Forbes, D. L., Craymer, M. R. & Whalen, D. J. R. Subsidence and inundation of a large Arctic permafrost delta. In Canadian Quaternary Association Conference (2015).
Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Nutrient and organic matter patterns across the Mackenzie River, estuary and shelf during the seasonal recession of sea-ice. J. Mar. Syst. 74, 741755 (2008).
Cunada, C. L., Lesack, L. F. W. & Tank, S. E. Methane emission dynamics among CO2-absorbing and thermokarst lakes of a great Arctic delta. Biogeochemistry 156, 375399 (2021).
Kempema, E. W. & Barnes, P. W. Anchor ice, seabed freezing, and sediment dynamics in shallow Arctic seas. J. Geophys. Res. 92, 671678 (1987).
Kempema, E. W., Reimnitz, E., Clayton, J. R. & Payne, J. R. Interactions of frazil and anchor ice with sedimentary particles in a flume. Cold Reg. Sci. Technol. 21, 137149 (1993).
Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 8487 (2015). Data analysis of the source-to-sink carbon pathway and storage in the prodelta of the Mackenzie Delta, pointing to the importance of the submarine domain as a hotspot of carbon sequestration.
Rowland, J. & Stauffer, S. Classified channel masks of portions of 13 rivers across the Arctic and areas of floodplain erosion and accretion ranging from 1973 to 2016. ESS-DIVE https://doi.org/10.15485/1571525 (2019).
Debolskaya, E. I. A mathematical model of channel deformations in permafrost zone rivers. Water Resour. 41, 512521 (2014).
Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 23242344 (2019).
Vesakoski, J. M. et al. Arctic Mackenzie Delta channel planform evolution during 19832013 utilising Landsat data and hydrological time series. Hydrol. Process. 31, 39793995 (2017).
Payne, C., Panda, S. & Prakash, A. Remote sensing of river erosion on the Colville River, North Slope Alaska. Remote Sens. 10, 397 (2018).
Lantuit, H. et al. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383400 (2012).
Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 7, 67 (2017).
Gibbs, A. E. & Richmond, B. M. National assessment of shoreline change summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska. USGS Open File Rep. 20171107, 121 (2017).
Wobus, C. et al. Thermal erosion of a permafrost coastline: improving process-based models using time-lapse photography. Arct. Antarct. Alp. Res. 43, 474484 (2011).
Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, 15 (2009).
Ping, C. L. et al. Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline. J. Geophys. Res. Biogeosci. 116, 112 (2011).
Fuchs, M. et al. Rapid fluvio-thermal erosion of a yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. 8, 118 (2020).
Jenner, K. A. & Hill, P. R. Recent, Arctic deltaic sedimentation: Olivier Islands, Mackenzie Delta, North-west Territories, Canada. Sedimentology 45, 9871004 (1998).
Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comput. Geosci. 53, 8093 (2013).
Chawla, A., Spindler, D. M. & Tolman, H. L. Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Model. 70, 189206 (2013).
Jerolmack, D. J. & Swenson, J. B. Scaling relationships and evolution of distributary networks on wave-influenced deltas. Geophys. Res. Lett. 34, 15 (2007).
Patruno, S. & Helland-Hansen, W. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth Sci. Rev. 185, 202233 (2018).
Donchyts, G. et al. Earths surface water change over the past 30 years. Nat. Clim. Chang. 6, 810813 (2016).
Fyfe, J. C. et al. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Sci. Rep. 3, 17 (2013).
Moon, T. A. et al. The expanding footprint of rapid Arctic change. Earths Future 7, 212218 (2019).
Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, 25 (2006).
Bring, A. et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. G 121, 621649 (2016).
Burn, C. R. & Kokelj, S. V. The environment and permafrost of the Mackenzie Delta area. Permafr. Periglac. Process. 20, 83105 (2009).
Arp, C. D., Jones, B. M., Schmutz, J. A., Urban, F. E. & Jorgenson, M. T. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline. Polar Biol. 33, 16291640 (2010).
Herman-Mercer, N., Schuster, P. & Maracle, K. Indigenous observations of climate change in the Lower Yukon River Basin, Alaska. Hum. Organ. 70, 244252 (2011).
Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science. 298, 21712173 (2002).
Dankers, R. & Middelkoop, H. River discharge and freshwater runoff to the Barents Sea under present and future climate conditions. Clim. Change 87, 131153 (2008).
Vernon, C. L. et al. Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7, 599614 (2013).
Box, J. E. et al. Global sea-level contribution from Arctic land ice: 19712017. Environ. Res. Lett. 13, 125012 (2018).
National Snow & Ice Data Center. Charctic interactive sea ice graph. NSIDC https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/ (2020).
Stopa, J. E., Ardhuin, F. & Girard-Ardhuin, F. Wave climate in the Arctic 19922014: seasonality and trends. Cryosphere 10, 16051629 (2016).
Waseda, T. et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Sci. Rep. 8, 4489 (2018).
Davy, R. & Outten, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 80478068 (2020).
Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323330 (2002).
Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).
Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Chang. 6, 280285 (2015).
Casas-Prat, M. & Wang, X. L. Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion. J. Geophys. Res. Oceans 125, e2019JC015745 (2020). This paper presents projections of future Arctic Ocean wave conditions using the well established WaveWatch III model, which shows a threefold increase in wave energy over the twenty-first century.
Antonova, S. et al. Thaw subsidence of a yedoma landscape in Northern Siberia, measured in situ and estimated from TerraSAR-X Interferometry. Remote Sens. 10, 494 (2018).
ONeill, B., Smith, S. L. & Duchesne, C. in 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (American Society of Civil Engineers, 2019).
Jorgenson, T. M., Frost, G. V. & Dissing, D. Drivers of landscape changes in coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 127 (2018).
Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2, 453457 (2012).
Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 2741 (2016).
Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 5762 (2018).
Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).
Lasserre, F. Simulations of shipping along Arctic routes: comparison, analysis and economic perspectives. Polar Rec. 51, 239259 (2015).
Eguluz, V. M., Fernndez-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 20102014. Sci. Rep. 6, 38 (2016).
Gulas, S., Downton, M., DSouza, K., Hayden, K. & Walker, T. R. Declining Arctic Ocean oil and gas developments: opportunities to improve governance and environmental pollution control. Mar. Policy 75, 5361 (2017).
Bendixen, M. et al. Promises and perils of sand exploitation in Greenland. Nat. Sustain. 2, 98104 (2019).
Wenzel, G. W. Canadian Inuit subsistence and ecological instability if the climate changes, must the Inuit? Polar Res. 28, 8999 (2009).
Zeller, D., Booth, S., Pakhomov, E., Swartz, W. & Pauly, D. Arctic fisheries catches in Russia, USA, and Canada: baselines for neglected ecosystems. Polar Biol. 34, 955973 (2011).
Pisaric, M. F. J. et al. Impacts of a recent storm surge on an Arctic delta ecosystem examined in the context of the last millennium. Proc. Natl Acad. Sci. USA 108, 89608965 (2011).
Notz, D. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).
Jafarov, E. E., Marchenko, S. S. & Romanovsky, V. E. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere 6, 613624 (2012).
McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 201719903 (2018).
Clow, G. D. CVPM 1.1: a flexible heat-transfer modeling system for permafrost. Geosci. Model. Dev. 11, 48894908 (2018).
Overeem, I. et al. A modeling toolbox for permafrost landscapes. Eos https://doi.org/10.1029/2018EO105155 (2018).
Wang, K., Jafarov, E. & Overeem, I. Sensitivity evaluation of the Kudryavtsev permafrost model. Sci. Total Environ. 720, 137538 (2020).
Matell, N. et al. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate. Comput. Geosci. 53, 6979 (2013).
Dupeyrat, L. et al. Effects of ice content on the thermal erosion of permafrost: implications for coastal and fluvial erosion. Permafr. Periglac. Process. 22, 179187 (2011).
Kobayashi, N., Vidrine, J. C., Nairn, R. B. & Soloman, S. M. Erosion of frozen cliffs due to storm surge on Beaufort Sea coast. J. Coast. Res. 15, 332344 (1999).
Baar, A. W., Boechat Albernaz, M., van Dijk, W. M. & Kleinhans, M. G. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat. Commun. 10, 4903 (2019).
Shen, H. H. Modelling ocean waves in ice-covered seas. Appl. Ocean Res. 83, 3036 (2019).
Hlse, P. & Bentley, S. J. A 210Pb sediment budget and granulometric record of sediment fluxes in a subarctic deltaic system: the Great Whale River, Canada. Estuar. Coast. Shelf Sci. 109, 4152 (2012).
Rogers, W. E. Implementation of sea ice in the wave model SWAN (Naval Research Laboratory, 2019).
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the worlds large river systems. Hydrol. Process. 27, 21712186 (2013).
Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis (National Geophysical Data Center, 2009).
US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).
Government of Canada. Historical hydrometric data. GC https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (2021).
Carson, M. A., Jasper, J. N. & Conly, F. M. Magnitude and sources of sediment input to the Mackenzie Delta, Northwest Territories, 197494. Arctic 51, 116124 (1998).
Lesack, L. F. W., Marsh, P., Hicks, F. E. & Forbes, D. L. Breakup in a large Arctic delta. Geophys. Res. Lett. 41, 15601566 (2014).
National Weather Service. River breakup database. NOAA https://www.weather.gov/aprfc/breakupDB?site=488 (2020).
Nienhuis, J. H. & van de Wal, R. S. W. Projections of global delta land loss from sea-level rise in the 21st century. Geophys. Res. Lett. 48, 19 (2021).
Kroon, A. et al. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland. Ambio 46, 132145 (2017). This paper investigates interacting process controls on several deltas in East Greenland, demonstrating the dominance of fluvial processes and the seasonality of wave-driven sediment transport.
Corner, G. D. in Incised Valleys in Time and Space Vol. 85 (eds Dalrymple, R. W., Leckie, D. A. & Tilan, R. W.) 161178 (Society for Sedimentary Geology, 2006).
Hansen, L. Deltaic infill of a deglaciated arctic fjord, East Greenland: sedimentary facies and sequence stratigraphy. J. Sediment. Res. 74, 422437 (2004).
Bendixen, M. & Kroon, A. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surf. Process. Landf. 42, 12271237 (2017).
Carrivick, J. L. & Quincey, D. J. Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Glob. Planet. Change 116, 156163 (2014).
North Slope Science Initiative. 2016 Colville River Delta spring breakup monitoring and hydrological assessment (NSSI, 2016).
How, P. et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 11, 4481 (2021).
Mernild, S. H. & Hasholt, B. Observed runoff, jokulhlaups and suspended sediment load from the Greenland ice sheet at Kangerlussuaq, West Greenland, 2007 and 2008. J. Glaciol. 55, 855858 (2009).
Mikkelsen, A. B., Hasholt, B., Knudsen, N. T. & Nielsen, M. H. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland. Hydrol. Res. 44, 5867 (2013).
Russell, A. J., Carrivick, J. L., Ingeman-Nielsen, T., Yde, J. C. & Williams, M. A new cycle of jkulhlaups at Russell Glacier, Kangerlussuaq, West Greenland. J. Glaciol. 57, 238246 (2011).