Williamson, M. & Griffiths, B. Biological Invasions (Springer, New York, 1996).
Ricciardi, A. et.Invasion science: A horizon scan for emerging challenges and opportunities Trends Ecol. Evolut. 32, 464474 (2017).
Van Saarloos, W. Front propagation into unstable states. Phys. Rep. 386, 29222 (2003).
OMalley L. Korniss G. & Caraco TM. Ecological invasion, roughened Fronts and a competitor extreme advance: integrating stochastic space-growth models. Bull. Math. Biol. 71, 11601188 (2009).
Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The mathematics behind biological invasions Vol. 44 (Springer, New York, 2016).
Fisher, R. A. The wave of positive genes. Ann. Eugenics 7, 355369 (1937).
Lavergne, S. & Molofsky, J. An invasive grass’s success is driven by its genetic variation and evolutionary potential. Proc. Natl. Acad. Sci. 104, 38833888 (2007).
Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against the cancer. Nat. Rev. Rev. 14, 371380 (2014).
CAS
PubMed
Google Scholar
Wolf, K. et.Physical limits of cell movement: Control by ecm space, nuclear deformation, and tuning by proteolysis or traction force. J. Cell Biol. 201, 10691084 (2013).
Lu, P.; Takai K.; Weaver V. M. & Werb Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Persp. Cold Spring Harbor Biol. 3, a005058 (2011).
Wirtz, D.; Konstantopoulos K. & Searson P. C. The Physics of Cancer: The role of physical interactions & mechanical forces in metastasis. Nat. Rev. Rev. 11, 512522 (2011).
Spill F., Reynolds D. S. and Kamm R. D. & Zaman M. H. Effect of the physical environment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40, 4148 (2016).
Hanahan, D. & Weinberg, R. A. The hallmarks and symptoms of cancer. Cell 100, 5770 (2000).
CAS
PubMed
Google Scholar
Hanahan (D.) & Weinberg (R. A. Hallmarks in cancer: the next generation. Cell 144, 646674 (2011).
CAS
Google Scholar
Azimzade, Y. & Saberi, A. A. Short-range migration can alter the evolutionary dynamics of solid tumors. J. Stat. Mech. Theory Exp. 2019, 103502 (2019).
West, J., Schenck, R., Gatenbee, C., Robertson-Tessi, M. & Anderson, A.R. Tissue structure accelerates evolution: premalignant sweeps precede neutral expansion. bioRxiv 542019 (2019).
Maley, C. C. et.Classifying the ecological and evolutionary features of neoplasms. Nat. Rev. Rev. 17, 605619 (2017).
Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther E. J. Tumour cells heterogeneity maintained through cooperating subclones in wnt driven mammary cancers Nature 508, 113117 (2014).
Shahriari, K. etal.In the bone metastatic space, heterogeneous cells of prostate cancer can cooperate. Oncogene (2016).
Calbo, J. et.A mouse model of small-cell lung cancer shows a functional role for tumor cell heterogeneity. Cancer Cell 19, 244256 (2011).
CAS
PubMed
Google Scholar
Martn-Pardillos, A. et.The role of clonal communication in breast cancer and heterogeneity in it. BMC Cancer 19, 126 (2019).
Kim, T.-M. et.Subclonal genetic architectures of metastatic and primary colorectal cancers based upon intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 44614472 (2015).
CAS
PubMed
Google Scholar
Yachida, S. et.Later in the genetic evolution pancreatic cancer, distant metastasis can occur. Nature 467, 1114 (2010).
Campbell, P. J. et.The dynamics and patterns that characterize genomic instability in metastatic pancreatic carcinoma. Nature 467, 1109 (2010).
Capp, J.-P. et.Group phenotypic structure in cancer. Elife 10, e63518 (2021).
Murray, J.D. Mathematical biology I: An introduction (2003).
Mikhailov A., Schimansky Geier L. & Ebeling W. Stochastic motion in bistable media. Phys. Lett. A 96, 453456 (1983).
Hatzikirou, H., Brusch, L., Schaller, C., Simon, M. & Deutsch, A. Prediction of traveling behavior in a lattice -gas cellular automaton model to predict tumor invasion. Comput. Math. Appl. 59, 23262339 (2010).
Azimzade, Y., Sasar, M. & Maleki, I. Invasion front dynamics and disordered environments. Sci. Rep. 10, 110 (2020).
Azimzade, Y., Saberi, A. A. A. Phys. Rev. Rev. 100, 062409 (2019).
Rapin, G. et.The roughness and dynamics proliferating cell fronts is used as a probe for cell-cell interactions. Sci. Rep. 11, 19 (2021).
Prez-Beteta, J. etal.The survival and response to surgery of patients with glioblastoma is predicted by the tumor surface regularity on mri imaging. Radiology 171051 (2018).
Prez-Beteta, J. etal.Pretreatment survival prediction for glioblastoma is possible with mri-based morphological features. Eur. Radiol. 110 (2018).
Br, A. et.The tumor growth process is extremely complex. Phys. Rev. Lett. 81, 4008 (1998).
Br, A., Albertos, S., Subiza, J. L., Garca-Asenjo, J. L. & Br, I. The universal dynamics that govern tumor growth. Biophys. J. 85, 29482961 (2003).
Huergo, M., Pasquale, M., Gonzlez, P., Bolzn, A. & Arvia, A. Comparison of non-cancerous cells and cancer cell colonies: Growth dynamics Phys. Rev. Rev. 85, 011918 (2012).
CAS
ADS
Google Scholar
Munn L. L. Dynamics and tissue topology during metastasis and cancer invasion. Phys. Biol. 10, 065003 (2013).
Dey, B., Sekhar, G.R. & Mukhopadhyay, S.K. In vivo mimicking model of solid tumor towards hydromechanics tissue deformation and creation necrosis. J. Biol. Phys. 140 (2018).
Block, M., Schll E & Drasdo D. Classifying expansion kinetics as well as critical surface dynamics of growing cell population growth cells. Phys. Rev. Lett. 99, 248101 (2007).
CAS
PubMed
ADS
Google Scholar
Moglia (B.), Guisoni (N.) & Albano (E.V.) Interfacial properties of a discrete model to study tumor growth. Phys. Rev. Rev. 87, 032713 (2013).
Moglia B., Albano E. V., & Guisoni N. Pinning and depinning transition in a stochastic growing model for the evolution cells colony fronts. Phys. Rev. Rev. 94, 052139 (2016).
Scianna, M. and Preziosi L. A hybrid model that describes different morphologies for tumor invasion fronts. Math. Model. Nat. Phenom. 7, 78104 (2012).
Azimzade, Y., Saberi, A. A. M. Role for the interplay between external and internal conditions in the invasive behavior tumors. Sci. Rep. 8, 5968 (2018).
Ben-Jacob, E. et.Generic modeling of cooperative patterns in bacterial colonies. Nature 368, 46 (1994).
CAS
PubMed
ADS
Google Scholar
Family, F. & Vicsek, T. Dynamics of fractal surface (World Scientific, Singapore, 1991).
Vicsek, T. Fractal growth phenomena (World scientific, Singapore, 1992).
Swanson, K. R., Bridge, C., Murray, J. & Alvord, E. C. Jr. Calculating the growth and invasion of gliomas in real brain tumors using mathematical modeling J. Neurol. Sci. 216, 110 (2003).
Metzcar J., Wang Y. and Heiland R. & Macklin P. Review of cell-based computational modelling in cancer biology. JCO Clin. Cancer Inform. 2, 113 (2019).
Azimzade, Y., Saberi, A. A. R.A. Gatenby, R.A. Superlinear growth shows the allee effect in cancers. Phys. Rev. Rev. 103, 042405 (2021).
CAS
PubMed
ADS
Google Scholar
Anderson, A. R. Weaver A. M., Cummings P. T. & Quaranta V. Tumor morphology, phenotypic and microenvironmental pressure driven phenotypic evolution. Cell 127, 905915 (2006).
CAS
PubMed
Google Scholar