Now Reading
National water shortage to protect low-to-high environmental flow protection
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

National water shortage to protect low-to-high environmental flow protection

  • WWF. Living Planet Report 2020Bending biodiversity loss’s curve Gland, Switzerland: WWF, 2020.

  • Collen, B. et al.Global patterns of freshwater species diversity and threat, as well as endemism. Glob. Ecol. Biogeogr. 23(1), 4051 (2014).

    PubMed

    Google Scholar

  • Hoekstra, A. Y. & Mekonnen M. M. The water footprint for humanity. Proc. Natl. Acad. Sci. 109(9), 32323237 (2012).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mekonnen, M. M. & Hoekstra, A. Y. Four billion people face severe water scarcity. Sci. Adv. 2(2), e1500323 (2016).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Virkki, V. et al.Environmental flow envelopes – Quantifying global, ecosystemthreatening streamflow alterations. Hydrol. Earth Syst. Sci. Discuss. 2021, 131 (2021).


    Google Scholar

  • Tickner, D. et al.An emergency recovery plan to change the global curve of freshwater biodiversity loss Bioscience 70(4), 330342 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • Falkenmark, M., Wang-Erlandsson, L. & Rockstrm, J. Understanding water resilience in Anthropocene. J. Hydrol. X 2, 100009 (2019).


    Google Scholar

  • Vanham, D. et al.For monitoring progress towards SDG target 6,4: An evaluation indicator 6.4.2 Levels of water stress. Sci. Total Environ. 613614, 218232 (2018).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Molle, F. Wester and Hirsch, P. River basin Closure: Processes, Implications and Responses Agric. Water Management 97(4), 569577 (2010).


    Google Scholar

  • Arthington, A. H. et al.The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Front. Environ. Sci. 6, 45 (2018).


    Google Scholar

  • Richter, B. D. Davis M. M. Apse C. and Konrad C. A presumptive benchmark for environmental flow protection River Res. Appl. 28(8), 13121321 (2012).


    Google Scholar

  • Richter, B. D. et al.Beef production has led to water scarcity, fish destruction, and even water insecurity. Nat. Sustain. 3(4), 319328 (2020).


    Google Scholar

  • A. Y. Hoekstra, M. M. Chapagain A. K., Mathews R. E. & Richter B. D. Global monthly Water Scarcity: Blue water footprints versus Blue water availability PLoS ONE 7(2), e32688 (2012).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint is linked to international trade and national consumption is not sustainable. Nat. Nat. 1(12), 792800 (2020).


    Google Scholar

  • Hogeboom Rick, J., de Bruin, D., Schyns, J. F., Krol Maarten, S. & Hoekstra, A. Y. The world’s river basins are mapped to determine the footprints of humans. Earths Future 8(2), e2019EF001363 (2020).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rosa, L. et al.The closing of the yield gap while ensuring water sustainability. Environ. Res. Lett. 13(10), 104002 (2018).

    ADS

    Google Scholar

  • Vanham, D. Mekonnen M. M. & Hoekstra A. Y. Treenuts & groundnuts in EAT-Lancet: Concerns about sustainable water use Global Food Secur. 24, 100357 (2020).


    Google Scholar

  • Vanham, D. et al.Global modelling study to determine the ratio of water stress to water resources available for the environment. Lancet Planet. Health 5(11), e766e774 (2021).

    PubMed

    Google Scholar

  • Vanham, D., Medarac, H., Schyns, J. F., Hogeboom, R. J. & Magagna D. The European Union’s energy sector’s consumptive water footprint. Environ. Res. Lett. 14(10), 104016 (2019).

    ADS
    CAS

    Google Scholar

  • Acreman, M. et al. Developing environmental standards for abstractions from UK rivers to implement the EU Water Framework Directive / Dveloppement de standards environnementaux sur les prlvements deau en rivire au Royaume Uni pour la mise en uvre de la directive cadre sur leau de lUnion Europenne. Hydrol. Sci. J. 53(6), 11051120 (2008).

    CAS

    Google Scholar

  • Longobardi, A. P. Villani, P. Regional assessment of environmental flows in the Mediterranean environment. J. Hydrol. Reg. Stud. 32, 100764 (2020).


    Google Scholar

  • Olsen, M. et al.Evaluation of a typical hydrological modeling in relation to environmental flows. J. Hydrol. 507, 5262 (2013).

    ADS

    Google Scholar

  • Vanham D., Fleischhacker E., & Rauch W. Impact of alpine snowmaking on the management of alpine water resources under present and future climate change conditions. Water Sci. Technol. 59(9), 17931801 (2009).

    CAS
    PubMed

    Google Scholar

  • Vanham, D. Fleischhacker E. & Rauch,W. Effect of an extreme hot and dry summer on water supply security within an alpine area Water Sci. Technol. 59(3), 469477 (2009).

    CAS
    PubMed

    Google Scholar

  • Verma R. K., Murthy S., Verma S., & Mishra S. K. Design flow duration charts for environmental flows estimation in Damodar River Basin. India. Appl. Water Sci. 7(3), 12831293 (2017).

    ADS

    Google Scholar

  • Van Der Knijff, J. M., Younis, J. & De Roo A. P. J. LISFLOOD – A GIS-based distributed model to simulate flood and water balance in river basins Int. J. Geogr. Inf. Sci. 24(2), 189212 (2010).


    Google Scholar

  • Falkenmark, M., Lundqvist, J. & Widstrand C. Macro-scale water scarcity calls for micro-scale solutions. Nat. Res. Forum 13(4), 258267 (1989).

    CAS

    Google Scholar

  • UNEP-DHI, UNEP. Transboundary River Basins Status and Trends. (United Nations Environment Programme (UNEP), Nairobi, 2016).

  • F. R. Rijsberman. Water scarcity: Factual or fiction? Agric. Water Management 80(13), 522 (2006).


    Google Scholar

  • FAO. The State of Food and Agriculture 2020. Agriculture’s water challenges. (FAO, Rome, 2020).

  • Wang, D., Hubacek, K., Shan, Y., Gerbens-Leenes, W. & Liu, J. A review on water footprint accounting and water stress. Water 13(2), 201 (2021).

    CAS

    Google Scholar

  • FAO. FAO. http://www.fao.org/nr/water/aquastat/water_use/index.stm. 2020.

  • Gleick P. H. Transitions towards freshwater sustainability Proc. Natl. Acad. Sci. 115(36), 88638871 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Gleick, P. H. & Palaniappan M. Peak water limits for freshwater withdrawal and usage. Proc. Natl. Acad. Sci. 107(25), 1115511162 (2010).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Vanham, D., Weingartner R. & Rauch W. The Cauvery River Basin in Southern India: Major challenges and possible solutions for the 21st Century. Water Sci. Technol. 64(1), 122131 (2011).

    CAS
    PubMed

    Google Scholar

  • Sadoff, C. W.; Borgomeo E. & Uhlenbrook S. Rethinking Water for SDG 6. Nat. Sustain. 3(5), 346347 (2020).


    Google Scholar

  • Vanham, D. & Mekonnen M. M. The scarcity weighted water footprint provides unreliable water sustainability scoring. Sci. Total Environ. 756, 143992 (2021).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Vanham, D. & Leip, A. Sustainable food system policies must address environmental pressures. Sci. Total Environ. 730, 139151 (2020).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Unver, O., Bhaduri, A. & Hoogeveen J. Water-use efficiency improvements and productivity improvements towards a sustainable path for meeting future water demands. Water Secur. 1, 2127 (2017).


    Google Scholar

  • Lankford, B. et al.A scale-based framework for understanding the promises, pitfalls and paradoxes associated with irrigation efficiency in order to meet major water problems. Global Environ. Change 65, 102182 (2020).


    Google Scholar

  • Grafton, R. Q. et al.The paradox of irrigation efficiency. Science 361(6404), 748750 (2018).

    ADS
    CAS
    PubMed

    Google Scholar

  • de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574(7776), 9094 (2019).

    ADS
    PubMed

    Google Scholar

  • Springmann, M. et al.There are several options for keeping the environment safe and healthy. Nature 562(7728), 519525 (2018).

    ADS
    CAS
    PubMed

    Google Scholar

  • Vanham, D.; Comero S.; Gawlik B. M. & Bidoglio G. The water footprints of different diets within European subnational geographical entities. Nat. Sustain. 1(9), 518525 (2018).


    Google Scholar

  • Vanham, D., Bouraoui, F., Leip, A., Grizzetti, B. & Bidoglio G. EU Consumer Food Waste: Loss of water and nitrogen resources Environ. Res. Lett. 10(8), 084008 (2015).

    ADS

    Google Scholar

  • Vanham, D. Water resources to sustain healthy diets: State of the art and outlook. Water 12, 3224 (2020).


    Google Scholar

  • Vanham, D., Guenther, S., Ros-Bar, M. & Bach-Faig, A. Which Mediterranean diet has the lowest water footprint? Resour. Conserv. Recycl. 171, 105631 (2021).

    PubMed
    PubMed Central

    Google Scholar

  • Grill, G. et al.The mapping of the world’s rivers. Nature 569(7755), 215221 (2019).

    ADS
    CAS

    Google Scholar

  • Belletti, B. et al.Europe’s rivers are divided by more than a million barriers Nature 588(7838), 436441 (2020).

    ADS
    CAS
    PubMed

    Google Scholar

  • Cantonati, M. et al.Characteristics, main effects, and stewardship in natural and artificial freshwater environments: The consequences for biodiversity conservation. Water 12(1), 260 (2020).


    Google Scholar

  • European Commission. EU Biodiversity Strategy 2030 Bringing nature back in our lives. COM/2020/380 final – Communication from the Commission (2020).

  • Albert, J. S. et al.Scientists warn humanity about the freshwater biodiversity crisis. Ambio 50(1), 8594 (2021).

    PubMed

    Google Scholar

  • Birk, S. et al.Multiple stressors have different impacts on freshwater biota at different spatial scales and ecosystems. Nat. Ecol. Evolut. 4(8), 10601068 (2020).


    Google Scholar

  • Reid, A. J. et al.Emerging threats and persistent conservation challenges facing freshwater biodiversity. Biol. Rev. 94(3), 849873 (2019).

    PubMed

    Google Scholar

  • Knouft J. H., & Ficklin D. L. The potential effects of climate change on biodiversity in flowing water systems Annu. Rev. Ecol. Evol. Syst. 48(1), 111133 (2017).


    Google Scholar

  • Allan, J. D. et al.Overfishing in Inland Waters Bioscience 55(12), 10411051 (2005).


    Google Scholar

  • Magliozzi, C. et al.Assessment of invasive aliens in European catchments: Distribution and Impacts Sci. Total Environ. 732, 138677 (2020).

    ADS
    CAS
    PubMed

    Google Scholar

  • Vanham, D. et al.The Environmental Footprint Family is designed to address sustainability at all levels, from local to global, and to deliver the SDGs. Sci. Total Environ. 693, 133642 (2019).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Vanham, D. Does the water footprint concept provide relevant information to address the waterfoodenergyecosystem nexus?. Ecosyst. Serv. 17, 298307 (2016).


    Google Scholar

  • Uhlenbrook, S. Yu, W. Schmitter, P. & Smith D. M. Optimising water we eat-rethinking policies to increase productive and sustainable water use in agri-food system across scales. The Lancet Planetary Health 6(1), e59e65 (2022).

    PubMed

    Google Scholar

  • Alfieri, L. et al.Global projections for river flood risk in a warmer planet Earths Future 5(2), 171182 (2017).

    ADS

    Google Scholar

  • Alfieri, L. et al.A global streamflow analysis for 1980-2018. J. Hydrol. J. Hydrol. 6, 100049 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • Farinosi, F. et al.A new approach to the assessment and mitigation of hydro-political risks: A spatially specific, data driven indicator of hydropolitical concerns. Glob. Environ. Chang. 52, 286313 (2018).

    CAS

    Google Scholar

  • Chow, V. T., Maidment, D. R. & Mays, L. W. Hydrology applied (McGraw-Hill, 1988).


    Google Scholar

  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. V4 SRTM data V4 – Hole-filled seamless SRTM. (International Centre for Tropical Agriculture, 2008).

  • Wu, H. et al.A new global database of river networks for macroscale hydrologic modeling. Water Resour. Res. 48(9), W09701 (2012).

    ADS

    Google Scholar

  • Hengl, T. et al.SoilGrids1kmGlobal soil data based upon automated mapping. PLoS ONE 9(8), e105992 (2014).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Bontemps, S., Defourny, P., Van Bogaert, E., Arino, O., Kalogirou, V., Perez, J. R. GLOBCOVER 2009 – Product description and validation Report. (UCLouvain & ESA, 2011).

  • Baret, F. et al.GEOV1 – LAI and FAPAR climate variables and FCOVER global series capitalizing over current products. Part 1: Principles of production and development. Remote Sensing Environ. 137, 299309 (2013).

    ADS

    Google Scholar

  • Yamazaki, D. et al.Development of the global width database to support large rivers. Water Resour. Res. 50(4), 34673480 (2014).

    ADS

    Google Scholar

  • Hersbach, H., de Rosnay, P., Bell, B. et al.Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP (2018).

  • Supit, I., Hooijer, A. A., & Van Diepen, C. A. System description for the WOFOST 6.0 crop sim model implemented in CGMS, vol. 1: Theory and Algorithms(Joint Research Centre of the Commission of the European Communities, 1994).

  • Haddeland, I. et al.Multimodel estimation of the global terrestrial water equilibrium: Setup and initial results J. Hydrometeorol. 12(5), 869884 (2011).

    ADS

    Google Scholar

  • UN. UN Population Databases. 2020. https://www.un.org/en/development/desa/population/publications/database/index.asp.

  • Vanham, D. Gawlik, B. M. & Bidoglio G. Cities as hotspots for indirect water consumption: A case study of Hong Kong. J. Hydrol. 573, 10751086 (2019).

    CAS

    Google Scholar

  • Gleick P. H. Basic water needs for human activities: Meeting basic requirements Water Int. 21(2), 8392 (1996).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.