Now Reading
Plastic pollution in the Arctic
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Plastic pollution in the Arctic

  • Plastics Europe. Plastics the Facts 2020: An analysis of European plastics production, demand and waste data (Plastics Europe, 2020).

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 15151518 (2020).


    Google Scholar

  • Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).


    Google Scholar

  • Bergmann, M., Tekman, M. B. & Gutow, L. Marine litter: Sea change for plastic pollution. Nature 544, 297297 (2017).


    Google Scholar

  • Villarrubia-Gmez, P., Cornell, S. E. & Fabres, J. Marine plastic pollution as a planetary boundary threatThe drifting piece in the sustainability puzzle. Mar. Policy 96, 213220 (2018).


    Google Scholar

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 6165 (2021).


    Google Scholar

  • Gigault, J. et al. Current opinion: What is a nanoplastic? Environ. Pollut. 235, 10301034 (2018).


    Google Scholar

  • Andrady, A. L. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 5772 (Springer, 2015).

  • van Sebille, E. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006 (2015).


    Google Scholar

  • Czar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 1023910244 (2014).


    Google Scholar

  • van Sebille, E., England, M. H. & Froyland, G. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ. Res. Lett. 7, 044040 (2012).


    Google Scholar

  • Parga Martnez, K. B., Tekman, M. B. & Bergmann, M. Temporal trends in marine litter at three stations of the HAUSGARTEN observatory in the Arctic deep sea. Front. Mar. Sci. 7, 321 (2020).


    Google Scholar

  • Ostle, C. et al. The rise in ocean plastics evidenced from a 60-year time series. Nat. Commun. 10, 1622 (2019).


    Google Scholar

  • Barrows, A. P. W., Cathey, S. E. & Petersen, C. W. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut. 237, 275284 (2018).


    Google Scholar

  • Lima, A. R. A. et al. Global patterns for the spatial distribution of floating microfibers: Arctic Ocean as a potential accumulation zone. J. Hazard. Mater. 403, 123796 (2021).


    Google Scholar

  • Protection of the Arctic Marine Environment (PAME). Desktop study on marine litter including microplastics in the Arctic (PAME, 2019).

  • Arctic Monitoring and Assessment Programme (AMAP). AMAP litter and microplastics monitoring guidelines. Version 1.0, 257 pp (AMAP, 2021).

  • Collard, F. & Ask, A. Plastic ingestion by Arctic fauna: A review. Sci. Total Environ. 786, 147462 (2021).


    Google Scholar

  • Baak, J. et al. Plastic ingestion by seabirds in the circumpolar Arctic: a review. Environ. Rev. 28, 506516 (2020).


    Google Scholar

  • Eriksen, M. et al. Mitigation strategies to reverse the rising trend of plastics in Polar Regions. Environ. Int. 139, 105704 (2020).


    Google Scholar

  • Tirelli, V., Suaria, G. & Lusher, A. L. in Handbook of Microplastics in the Environment (eds Rocha-Santos, T., Costa, M., & Mouneyrac, C.) 142 (Springer, 2020).

  • Halsband, C. & Herzke, D. Plastic litter in the European Arctic: what do we know? Emerg. Contam. 5, 308318 (2019).


    Google Scholar

  • Arctic Monitoring and Assessment Programme (AMAP). Arctic climate change update 2021: key trends and impacts. Summary for policy-makers (AMAP, 2021).

  • Czar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv. 3, e1600582 (2017).


    Google Scholar

  • Mu, J. et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull. 143, 5865 (2019).


    Google Scholar

  • Kim, S.-K. et al. Importance of seasonal sea ice in the western Arctic ocean to the Arctic and global microplastic budgets. J. Hazard. Mater. 418, 125971 (2021).


    Google Scholar

  • Yakushev, E. et al. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Commun. Earth Environ. 2, 23 (2021).


    Google Scholar

  • Holmes, L. A., Turner, A. & Thompson, R. C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 160, 4248 (2012).


    Google Scholar

  • Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505 (2018).


    Google Scholar

  • van Sebille, E. et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).


    Google Scholar

  • Gavrilo, M. Plastic pollution and seabirds in the Russian Arctic (Conservation of Arctic Flora and Fauna (CAFF), 2019).

  • Nashoug, B. F. Sources of marine litter workshop report, Svalbard 4th6th September 2016 (SALT, 2017).

  • Benzik, A. N., Orlov, A. M. & Novikov, M. A. Marine seabed litter in Siberian Arctic: A first attempt to assess. Mar. Pollut. Bull. 172, 112836 (2021).


    Google Scholar

  • OSPAR Commission. Marine litter in the North-East Atlantic Region: assessment and priorities for response (OSPAR Commission, 2009).

  • Buhl-Mortensen, L. & Buhl-Mortensen, P. Marine litter in the Nordic Seas: Distribution composition and abundance. Mar. Pollut. Bull. 125, 260270 (2017).


    Google Scholar

  • Manville, A. M. in Proceedings of the Second International Conference on Marine Debris (eds Shomura, R. S. & Godfrey, M. L.) 27 (NOAA, 1990).

  • Polasek, L. et al. Marine debris in five national parks in Alaska. Mar. Pollut. Bull. 117, 371379 (2017).


    Google Scholar

  • Falk-Andersson, J. et al. Svalbard Beach litter deep dive (SALT, 2019).

  • Bergmann, M., Lutz, B., Tekman, M. B. & Gutow, L. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life. Mar. Pollut. Bull. 125, 535540 (2017).


    Google Scholar

  • Jasklski, M. W., Pawowski, ., Strzelecki, M. C., Zagrski, P. & Lane, T. P. Trash on Arctic beach: Coastal pollution along Calypsostranda, Bellsund, Svalbard. Pol. Polar Res. 39, 211224 (2018).


    Google Scholar

  • Wsawski, J. M. & Kotwicki, L. Macro-plastic litter, a new vector for boreal species dispersal on Svalbard. Pol. Polar Res. 39, 165174 (2018).


    Google Scholar

  • Vesman, A., Moulin, E., Egorova, A. & Zaikov, K. Marine litter pollution on the Northern Island of the Novaya Zemlya archipelago. Mar. Pollut. Bull. 150, 110671 (2020).


    Google Scholar

  • Mallory, M. L. et al. Anthropogenic litter in marine waters and coastlines of Arctic Canada and West Greenland. Sci. Total Environ. 783, 146971 (2021).


    Google Scholar

  • Kylin, H. Marine debris on two Arctic beaches in the Russian Far East. Polar Res. 39, 3381 (2020).


    Google Scholar

  • Toi, T. N., Vruggink, M. & Vesman, A. Microplastics quantification in surface waters of the Barents, Kara and White Seas. Mar. Pollut. Bull. 161, 111745 (2020).


    Google Scholar

  • Liboiron, M. et al. Abundance and types of plastic pollution in surface waters in the Eastern Arctic (Inuit Nunangat) and the case for reconciliation science. Sci. Total Environ. 782, 146809 (2021).


    Google Scholar

  • Merrell, J. & Theodore, R. in Proceedings of the Workshop on the Fate and Impact of Marine Debris (eds Shomura, R. S. & Yoshida, Y. O.) 2629 (NOAA, 1984).

  • Ivanova, L., Sokolov, K. & Kharitonova, G. Plastic pollution tendencies of the Barents Sea and adjacent waters under the climate change. Arct. North 32, 121145 (2018).


    Google Scholar

  • Tekman, M. B., Krumpen, T. & Bergmann, M. Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep Sea Res. I 120, 8899 (2017).


    Google Scholar

  • Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 97209728 (2016).


    Google Scholar

  • Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768771 (2015).


    Google Scholar

  • Warren, J. A., Berner, J. E. & Curtis, T. Climate change and human health: infrastructure impacts to small remote communities in the north. Int. J. Circumpolar Health 64, 487497 (2005).


    Google Scholar

  • Kirkelund, G. M., Diez, L., Scheutz, C. & Eisted, R. in 5th International Conference on Sustainable Solid Waste Management (European Commission, 2017).

  • Eisted, R. & Christensen, T. H. Waste management in Greenland: current situation and challenges. Waste Manag. Res. 29, 10641070 (2011).


    Google Scholar

  • Samuelson, G. M. Water and waste management issues in the Canadian Arctic: Iqaluit, Baffin Island. Can. Water Resour. J. 23, 327338 (1998).


    Google Scholar

  • Kirkfeldt, T. S. Marine Litter in Greenland. Masters thesis, Aalborg Univ. (2016).

  • Ershova, A., Makeeva, I., Malgina, E., Sobolev, N. & Smolokurov, A. Combining citizen and conventional science for microplastics monitoring in the White Sea basin (Russian Arctic). Mar. Pollut. Bull. 173, 112955 (2021).


    Google Scholar

  • Huntington, A. et al. A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. FACETS 5, 432454 (2020).


    Google Scholar

  • Athey, S. N. et al. The widespread environmental footprint of indigo denim microfibers from blue jeans. Environ. Sci. Technol. Lett. 7, 840847 (2020).


    Google Scholar

  • Rist, S. et al. Quantification of plankton-sized microplastics in a productive coastal Arctic marine ecosystem. Environ. Pollut. 266, 115248 (2020).


    Google Scholar

  • von Friesen, L. W. et al. Summer sea ice melt and wastewater are important local sources of microlitter to Svalbard waters. Environ. Int. 139, 105511 (2020).


    Google Scholar

  • Granberg, M. E., Ask, A. & Gabrielsen, G. W. Local contamination in Svalbard-Overview and suggestions for remediation actions (Norwegian Polar Institute, 2017).

  • De Falco, F. et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 236, 916925 (2017).


    Google Scholar

  • Magnusson, K. et al. Microlitter in sewage treatment systems: A Nordic perspective on waste water treatment plants as pathways for microscopic anthropogenic particles to marine systems (Nordisk Ministerrd, 2016).

  • Dippo, B. Microplastics in the Coastal Environment of West Iceland. Masters thesis, Univ. Akureyri (2012).

  • Granberg, M. et al. Anthropogenic microlitter in wastewater and marine samples from Ny-lesund, Barentsburg and Signehamna, Svalbard (IVL Swedish Environmental Research Institute, 2019).

  • United Nation Environment Programme (UNEP). Marine plastic debris and microplastics: Global lessons and research to inspire action and guide policy change (UNEP, 2016).

  • Hamilton, B. M. et al. Microplastics around an Arctic seabird colony: Particle community composition varies across environmental matrices. Sci. Total Environ. 773, 145536 (2021).


    Google Scholar

  • Knutsen, H. et al. Microplastic accumulation by tube-dwelling, suspension feeding polychaetes from the sediment surface: A case study from the Norwegian Continental Shelf. Mar. Environ. Res. 161, 105073 (2020).


    Google Scholar

  • Bergmann, M., Sandhop, N., Schewe, I. & DHert, D. Observations of floating anthropogenic litter in the Barents Sea and Fram Strait, Arctic. Polar Biol. 39, 553560 (2016).


    Google Scholar

  • Lusher, A. L., Tirelli, V., OConnor, I. & Officer, R. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947 (2015).


    Google Scholar

  • Pogojeva, M. et al. Distribution of floating marine macro-litter in relation to oceanographic characteristics in the Russian Arctic Seas. Mar. Pollut. Bull. 166, 112201 (2021).


    Google Scholar

  • Mountford, A. S. & Morales Maqueda, M. A. Modeling the accumulation and transport of microplastics by sea ice. J. Geophys. Res. 126, e2020JC016826 (2021).


    Google Scholar

  • Onink, V., Wichmann, D., Delandmeter, P. & van Sebille, E. The role of Ekman currents, geostrophy, and Stokes drift in the accumulation of floating microplastic. J. Geophys. Res. 124, 14741490 (2019).


    Google Scholar

  • Chia-Ying, K., Yi-Chia, H. & Ming-Shiou, J. Global distribution and cleanup opportunities for macro ocean litter: A quarter century of accumulation dynamics under windage effects. Environ. Res. Lett. 15, 104063 (2020).


    Google Scholar

  • Thiel, M., Hinojosa, I. A., Joschko, T. & Gutow, L. Spatio-temporal distribution of floating objects in the German Bight (North Sea). J. Sea Res. 65, 368379 (2011).


    Google Scholar

  • Brach, L. et al. Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre. Mar. Pollut. Bull. 126, 191196 (2018).


    Google Scholar

  • Pan, Z. et al. Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Sci. Total Environ. 650, 19131922 (2019).


    Google Scholar

  • Pnyushkov, A., Polyakov, I. V., Padman, L. & Nguyen, A. T. Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean. Ocean Sci. 14, 13291347 (2018).


    Google Scholar

  • Wekerle, C. et al. Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J. Geophys. Res. 122, 83858405 (2017).


    Google Scholar

  • Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface, through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 40794090 (2020).


    Google Scholar

  • Wichmann, D., Delandmeter, P. & van Sebille, E. Influence of near-surface currents on the global dispersal of marine microplastic. J. Geophys. Res. 124, 60866096 (2019).


    Google Scholar

  • Khn, S., Bravo Rebolledo, E. L. & van Franeker, J. A. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 75116 (Springer, 2015).

  • LITTERBASE. Online Portal for Marine Litter. www.litterbase.org (2021).

  • Kanhai, L. D. K. et al. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull. 130, 818 (2018).


    Google Scholar

  • Ross, P. S. et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat. Commun. 12, 106 (2021).


    Google Scholar

  • Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Future 2, EF000240 (2014).


    Google Scholar

  • Kanhai, L. D. K., Gardfeldt, K., Krumpen, T., Thompson, R. C. & OConnor, I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci. Rep. 10, 5004 (2020).


    Google Scholar

  • Juhl, A. R., Krembs, C. & Meiners, K. M. Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic sea ice. Mar. Ecol. Prog. Ser. 436, 116 (2011).


    Google Scholar

  • Hoffmann, L., Eggers, S. L., Allhusen, E., Katlein, C. & Peeken, I. Interactions between the ice algae Fragillariopsis cylindrus and microplastics in sea ice. Environ. Int. 139, 105697 (2020).


    Google Scholar

  • Wollenburg, J. E. et al. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom. Sci. Rep. 8, 7703 (2018).


    Google Scholar

  • Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 1100011010 (2017).


    Google Scholar

  • Frank, Y. A. et al. Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom Rivers in Siberia, Russia. Sustainability 13, 80 (2021).


    Google Scholar

  • Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 1230212315 (2012).


    Google Scholar

  • Grsvik, B. E. et al. Assessment of marine litter in the Barents Sea, a part of the Joint NorwegianRussian Ecosystem Survey. Front. Mar. Sci. 5, 72 (2018).


    Google Scholar

  • Coyle, R., Hardiman, G. & Driscoll, K. O. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020).


    Google Scholar

  • Brunner, K., Kukulka, T., Proskurowski, G. & Law, K. L. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris. J. Geophys. Res. Oceans 120, 75597573 (2015).


    Google Scholar

  • Wobus, F., Shapiro, G. I., Huthnance, J. M. & Maqueda, M. A. M. The piercing of the Atlantic Layer by an Arctic shelf water cascade in an idealised study inspired by the Storfjorden overflow in Svalbard. Ocean Model. 71, 5465 (2013).


    Google Scholar

  • Buhl-Mortensen, P., Gordon, D. C., Buhl-Mortensen, L. & Kulka, D. W. First description of a Lophelia pertusa reef complex in Atlantic Canada. Deep Sea Res. I 126, 2130 (2017).


    Google Scholar

  • Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 3751 (2013).


    Google Scholar

  • Sen, A. et al. Atypical biological features of a new cold seep site on the Lofoten-Vesterlen continental margin (northern Norway). Sci. Rep. 9, 1762 (2019).


    Google Scholar

  • Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).


    Google Scholar

  • Schulz, M., Bergmann, M., von Juterzenka, K. & Soltwedel, T. Colonisation of hard substrata along a channel system in the deep Greenland Sea. Polar Biol. 33, 13591369 (2010).


    Google Scholar

  • Kanhai, L. D. K. et al. Deep sea sediments of the Arctic Central Basin: A potential sink for microplastics. Deep Sea Res. I 145, 137142 (2019).


    Google Scholar

  • Mu, J. et al. Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas. Environ. Pollut. 245, 122130 (2019).


    Google Scholar

  • Kuroda, M. et al. The current state of marine debris on the seafloor in offshore area around Japan. Mar. Pollut. Bull. 161, 111670 (2020).


    Google Scholar

  • Kane, I. A. et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368, 11401145 (2020).


    Google Scholar

  • Collard, F. et al. Anthropogenic particles in sediment from an Arctic fjord. Sci. Total Environ. 772, 145575 (2021).


    Google Scholar

  • Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).


    Google Scholar

  • Stefnsson, H. et al. Microplastics in glaciers: first results from the Vatnajkull ice cap. Sustainability 13, 4183 (2021).


    Google Scholar

  • Outridge, P. M., Macdonald, R. W., Wang, F., Stern, G. A. & Dastoor, A. P. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89111 (2008).


    Google Scholar

  • Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).


    Google Scholar

  • Allen, S. et al. Examination of the ocean as a source for atmospheric microplastics. PLoS One 15, e0232746 (2020).


    Google Scholar

  • Iversen, M. et al. The diet of polar bears (Ursus maritimus) from Svalbard, Norway, inferred from scat analysis. Polar Biol. 36, 561571 (2013).


    Google Scholar

  • Botterell, Z. L. R. et al. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Sci. Total Environ. (in the press).

  • Fang, C. et al. Microplastics in three typical benthic species from the Arctic: Occurrence, characteristics, sources, and environmental implications. Environ. Res. 192, 110326 (2021).


    Google Scholar

  • Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298306 (2018).


    Google Scholar

  • Lusher, A., Brte, I. L., Hurley, R., Iversen, K. & Olsen, M. Testing of methodology for measuring microplastics in blue mussels (Mytilus spp) and sediments, and recommendations for future monitoring of microplastics (R & D-project). Norwegian Institute for Water Research https://niva.brage.unit.no/niva-xmlui/handle/11250/2470297 (2017).

  • Iannilli, V., Pasquali, V., Setini, A. & Corami, F. First evidence of microplastics ingestion in benthic amphipods from Svalbard. Environ. Res. 179, 108811 (2019).


    Google Scholar

  • Morgana, S. et al. Microplastics in the Arctic: a case study with sub-surface water and fish samples off Northeast Greenland. Environ. Pollut. 242, 10781086 (2018).


    Google Scholar

  • de Vries, A. N., Govoni, D., rnason, S. H. & Carlsson, P. Microplastic ingestion by fish: Body size, condition factor and gut fullness are not related to the amount of plastics consumed. Mar. Pollut. Bull. 151, 110827 (2020).


    Google Scholar

  • Khn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 12691278 (2018).


    Google Scholar

  • Brte, I. L. N., Eidsvoll, D. P., Steindal, C. C. & Thomas, K. V. Plastic ingestion by Atlantic cod (Gadus morhua) from the Norwegian coast. Mar. Pollut. Bull. 112, 105110 (2016).


    Google Scholar

  • Liboiron, M. et al. Low incidence of plastic ingestion among three fish species significant for human consumption on the island of Newfoundland, Canada. Mar. Pollut. Bull. 141, 244248 (2019).


    Google Scholar

  • Nielsen, J., Hedeholm, R. B., Simon, M. & Steffensen, J. F. Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol. 37, 3746 (2014).


    Google Scholar

  • Leclerc, L.-M. et al. A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 11971208 (2012).


    Google Scholar

  • Trevail, A. M., Gabrielsen, G. W., Khn, S., & Van Franeker, J. A. Elevated levels of ingested plastic in a high Arctic seabird, the northern fulmar (Fulmarus glacialis). Polar Biol. 38, 975981 (2015).


    Google Scholar

  • Provencher, J. F. et al. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. Anal. Methods 9, 14541469 (2017).


    Google Scholar

  • Martin, A. R. & Clarke, M. R. The diet of sperm whales (Physeter macrocephalus) captured between Iceland and Greenland. J. Mar. Biol. Assoc. UK 66, 779790 (2009).


    Google Scholar

  • Moore, R. C. et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Mar. Pollut. Bull. 150, 110723 (2020).


    Google Scholar

  • Finley, K. J. Natural history and conservation of the Greenland whale, or bowhead, in the Northwest Atlantic. Arctic 54, 5576 (2001).


    Google Scholar

  • Walker, W. A. & Hanson, M. B. Biological observations on Stejnegers beaked whale, Mesoplodon Stejnegeri, from strandings on Adak Island, Alaska. Mar. Mamm. Sci. 15, 13141329 (1999).


    Google Scholar

  • Bourdages, M. P. T. et al. No plastics detected in seal (Phocidae) stomachs harvested in the eastern Canadian Arctic. Mar. Pollut. Bull. 150, 110772 (2020).


    Google Scholar

  • Pinzone, M. et al. First record of plastic debris in the stomach of a hooded seal pup from the Greenland Sea. Mar. Pollut. Bull. 167, 112350 (2021).


    Google Scholar

  • Carlsson, P., Singdahl-Larsen, C. & Lusher, A. L. Understanding the occurrence and fate of microplastics in coastal Arctic ecosystems: The case of surface waters, sediments and walrus (Odobenus rosmarus). Sci. Total Environ. 792, 148308 (2021).


    Google Scholar

  • Rochman, C. M., Manzano, C., Hentschel, B. T., Simonich, S. L. M. & Hoh, E. Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environ. Sci. Technol. 47, 1397613984 (2013).


    Google Scholar

  • Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Mar. Pollut. Bull. 110, 493500 (2016).


    Google Scholar

  • Herzke, D. et al. Negligible impact of ingested microplastics on tissue concentrations of persistent organic pollutants in northern fulmars off coastal Norway. Environ. Sci. Technol. 50, 19241933 (2015).


    Google Scholar

  • Provencher, J. F., Ammendolia, J., Rochman, C. M. & Mallory, M. L. Assessing plastic debris in aquatic food webs: what we know and dont know about uptake and trophic transfer. Environ. Rev. 27, 304317 (2018).


    Google Scholar

  • Neumann, S. et al. Ingested plastics in northern fulmars (Fulmarus glacialis): A pathway for polybrominated diphenyl ether (PBDE) exposure? Sci. Total Environ. 778, 146313 (2021).


    Google Scholar

  • AMAP assessment 2016: chemicals of emerging Arctic concern (Arctic Monitoring and Assessment Programme (AMAP), 2017).

  • Lu, Z. et al. Occurrence of substituted diphenylamine antioxidants and benzotriazole UV stabilizers in Arctic seabirds and seals. Sci. Total Environ. 663, 950957 (2019).


    Google Scholar

  • Padula, V., Beaudreau, A. H., Hagedorn, B. & Causey, D. Plastic-derived contaminants in Aleutian Archipelago seabirds with varied foraging strategies. Mar. Pollut. Bull. 158, 111435 (2020).


    Google Scholar

  • Bech, G. Retrieval of lost gillnets at Ilulissat Kangia (Northwest Atlantic Fisheries Organization (NAFO), 1995).

  • Kapel, F. O. A note on the net-entanglement of a bowhead whale (Balaena mysticetus) in Northwest Greenland, November 1980. Report of the International Whaling Commission, 35, 377378 (1985).

  • Aasen, A. et al. Survey report from the joint Norwegian/Russian Ecosystem Survey in the Barents Sea and adjacent waters, August-October 2013 (IMR/PINRO, 2013).

  • Prokhorova, T. in Survey Report from the Joint Norwegian/Russian Ecosystem Survey in the Barents Sea and Adjacent Waters, August-October 2014 Vol. 1/2015 (ed Eriksen, E.) 1153 (IMR/PINRO, 2014).

  • Barnes, D. K. A. & Milner, P. Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 146, 815825 (2005).


    Google Scholar

  • Kotwicki, L. et al. The re-appearance of the Mytilus spp. complex in Svalbard, Arctic, during the Holocene: The case for an arrival by anthropogenic flotsam. Glob. Planet. Change 202, 103502 (2021).


    Google Scholar

  • Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).


    Google Scholar

  • Galloway, T. & Lewis, C. Marine microplastics. Curr. Biol. 27, R445R446 (2017).


    Google Scholar

  • Rochman, C. M. et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology 97, 302312 (2016).


    Google Scholar

  • Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 23882392 (2013).


    Google Scholar

  • Rochman, C. M., Kurobe, T., Flores, I. & Teh, S. J. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ. 493, 656661 (2014).


    Google Scholar

  • von Moos, N., Burkhardt-Holm, P. & Khler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 1132711335 (2012).


    Google Scholar

  • Kaposi, K. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. 48, 16381645 (2014).


    Google Scholar

  • Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA. 113, 24302435 (2016).


    Google Scholar

  • Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983992 (2020).


    Google Scholar

  • Chiappone, M., Dienes, H., Swanson, D. W. & Miller, S. L. Impacts of lost fishing gear on coral reef sessile invertebrates in the Florida Keys National Marine Sanctuary. Biol. Conserv. 121, 221230 (2005).


    Google Scholar

  • Mouchi, V. et al. Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environ. Pollut. 253, 322329 (2019).


    Google Scholar

  • Uhrin, A. V. & Schellinger, J. Marine debris impacts to a tidal fringing-marsh in North Carolina. Mar. Pollut. Bull. 62, 26052610 (2011).


    Google Scholar

  • Green, D. S., Boots, B., Blockley, D. J., Rocha, C. & Thompson, R. C. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning. Environ. Sci. Technol. 49, 53805389 (2015).


    Google Scholar

  • Geilfus, N. X. et al. Distribution and impacts of microplastic incorporation within sea ice. Mar. Pollut. Bull. 145, 463473 (2019).


    Google Scholar

  • Shen, M. et al. Can microplastics pose a threat to ocean carbon sequestration? Mar. Pollut. Bull. 150, 110712 (2020).


    Google Scholar

  • Ganguly, M. & Ariya, P. A. Ice nucleation of model nanoplastics and microplastics: a novel synthetic protocol and the influence of particle capping at diverse atmospheric environments. ACS Earth Space Chem. 3, 17291739 (2019).


    Google Scholar

  • Chen, X., Huang, G., Gao, S. & Wu, Y. Effects of permafrost degradation on global microplastic cycling under climate change. J. Environ. Chem. Eng. 9, 106000 (2021).


    Google Scholar

  • Welden, N. A. C. & Lusher, A. L. Impacts of changing ocean circulation on the distribution of marine microplastic litter. Integr. Environ. Assess. Manag. 13, 483487 (2017).


    Google Scholar

  • Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci. 14, 118120 (2021).


    Google Scholar

  • Alkama, R. et al. Wind amplifies the polar sea ice retreat. Environ. Res. Lett. 15, 124022 (2020).


    Google Scholar

  • Kukulka, T., Proskurowski, G., Mort-Ferguson, S., Meyer, D. W. & Law, K. L. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39, L07601 (2012).


    Google Scholar

  • Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Prtner, H.-O. et al.) 589655 (Intergovernmental Panel on Climate Change (IPCC), 2019).

  • Peng, L. et al. Role of intense Arctic storm in accelerating summer sea ice melt: An in situ observational study. Geophys. Res. Lett. 48, e2021GL092714 (2021).


    Google Scholar

  • Werbowski, L. M. et al. Urban stormwater runoff: A major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS ES&T Water 1, 14201428 (2021).


    Google Scholar

  • Serreze, M. C. & Meier, W. N. The Arctics sea ice cover: trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 1436, 3653 (2019).


    Google Scholar

  • Mjelde, A., Martinsen, K., Eide, M. & Endresen, . Environmental accounting for Arctic shippingA framework building on ship tracking data from satellites. Mar. Pollut. Bull. 87, 2228 (2014).


    Google Scholar

  • The New Plastics Economy: Rethinking the future of plastics (World Economic Forum, 2016).

  • Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374378 (2019).


    Google Scholar

  • Hamilton, L. A. & Feit, S. Plastic and climate: the hidden costs of a plastic planet (eds Kistler, A. & Muffet, C.) 195 (Center for International Environmental Law (CIEL), 2019).

  • Royer, S.-J., Ferrn, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the environment. PLoS One 13, e0200574 (2018).


    Google Scholar

  • Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 14551461 (2020).


    Google Scholar

  • Falk-Andersson, J., Larsen Haarr, M. & Havas, V. Basic principles for development and implementation of plastic clean-up technologies: What can we learn from fisheries management? Sci. Total Environ. 745, 141117 (2020).


    Google Scholar

  • He, P. & Suuronen, P. Technologies for the marking of fishing gear to identify gear components entangled on marine animals and to reduce abandoned, lost or otherwise discarded fishing gear. Mar. Pollut. Bull. 129, 253261 (2018).


    Google Scholar

  • Chen, C.-L. & Liu, T.-K. Fill the gap: Developing management strategies to control garbage pollution from fishing vessels. Mar. Policy 40, 3440 (2013).


    Google Scholar

  • Olsen, J., Nogueira, L. A., Normann, A. K., Vangelsten, B. V. & Bay-Larsen, I. Marine litter: Institutionalization of attitudes and practices among fishers in Northern Norway. Mar. Policy 121, 104211 (2020).


    Google Scholar

  • Bilkovic, D. M., Havens, K. J., Stanhope, D. M. & Angstadt, K. T. Use of fully biodegradable panels to reduce derelict pot threats to marine fauna. Conserv. Biol. 26, 957966 (2012).


    Google Scholar

  • Grimaldo, E. et al. The effect of long-term use on the catch efficiency of biodegradable gillnets. Mar. Pollut. Bull. 161, 111823 (2020).


    Google Scholar

  • Newman, S., Watkins, E., Farmer, A., ten Brink, P. & Schweitzer, J.-P. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 367394 (Springer, 2015).

  • Skimming the surface: using seabirds to monitor plastic in the Arctic (Conservation of Arctic Flora and Fauna, 2020).

  • Melvin, J., Bury, M., Ammendolia, J., Mather, C. & Liboiron, M. Critical gaps in shoreline plastics pollution research. Front. Mar. Sci. 8, 845 (2021).


    Google Scholar

  • Soltwedel, T. et al. Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol. Indic. 65, 89102 (2016).


    Google Scholar

  • Aliani, S., Casagrande, G., Catapano, P. & Catapano, V. in Mare Plasticum-The Plastic Sea: Combatting Plastic Pollution Through Science and Art (eds Streit-Bianchi, M., Cimadevila, M. & Trettnak, W.) 89116 (Springer, 2020).

  • Lennert, A. E. What happens when the ice melts? Belugas, contaminants, ecosystems and human communities in the complexity of global change. Mar. Pollut. Bull. 107, 714 (2016).


    Google Scholar

  • Houde, M. et al. Spatial and temporal trends of alternative flame retardants and polybrominated diphenyl ethers in ringed seals (Phoca hispida) across the Canadian Arctic. Environ. Pollut. 223, 266276 (2017).


    Google Scholar

  • Primpke, S. et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Appl. Spectrosc. 74, 10121047 (2020).


    Google Scholar

  • Shen, M. et al. Recent advances in toxicological research of nanoplastics in the environment: A review. Environ. Pollut. 252, 511521 (2019).


    Google Scholar

  • Materi, D. et al. Nanoplastics measurements in Northern and Southern polar ice. Environ. Res. 208, 112741 (2022).


    Google Scholar

  • Allen, D. et al. Micro- and nanoplastics in the marineatmosphere environment. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00292-x (2022).

  • Macdonald, R. W., Harner, T. & Fyfe, J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 342, 586 (2005).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.