Now Reading
Response of litter decomposition to one-year nitrogen addition in the Tianshan Mountains, China
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Response of litter decomposition to one-year nitrogen addition in the Tianshan Mountains, China

  • 1.

    Berg, B. et.Limit values for pine litter decomposition: A synthesis of boreal and temperate pin forest systems. Biogeochemistry 100, 5773. https://doi.org/10.1007/s10533-009-9404-y (2010).

    Article
    CAS

    Google Scholar

  • 2.

    Hobbie, S. E. et.Multiple forms of nitrogen enrichment are the responses of decomposing litter, and its microbial community. Ecol. Monogr. 82, 389405 (2012).


    Google Scholar

  • 3.

    Handa, I. T. et.Consequences to biodiversity loss from litter decomposition across different biomes Nature 509, 218221 (2014).

    PubMed
    ADS
    CAS

    Google Scholar

  • 4.

    Talbot, J. M.; Yelle D. J.; Nowick J. S. & Treseder K. K. Litter decay rates can be determined using lignin chemistry. Biogeochemistry 108, 279295 (2012).

    CAS

    Google Scholar

  • 5.

    Pei, G. et.C/N, lignin and nitrogen are important regulators for gross nitrogen release in a temperate forest ecosystem. For. Ecol. Manage. 440, 6169 (2019).


    Google Scholar

  • 6.

    Couteaux M. Bottner P. and Berg B. Litter decomposition climate and liter quality. Trends Ecol. Evol. 10, 6366 (1995).


    Google Scholar

  • 7.

    Galloway, J. N. et.Transformation of the nitrogen cycle: Recent trends and questions, as well as potential solutions. Science 320, 889. https://doi.org/10.1126/science.1136674 (2008).

    Article
    PubMed
    ADS
    CAS

    Google Scholar

  • 8.

    Kanakidou, M. et.Past, present, future atmospheric nitrogen deposition J. Atmos. Sci. 73, 20392047. https://doi.org/10.1175/JAS-D-15-0278.1 (2016).

    Article
    PubMed
    PubMed Central
    ADS
    CAS

    Google Scholar

  • 9.

    Zhu, J. et.The composition, spatial patterns, as well as influencing factors, of atmospheric nitrogen deposition in Chinese terrestrial ecosystems. Sci. Total Environ. 511, 777785 (2015).

    PubMed
    ADS
    CAS

    Google Scholar

  • 10.

    Liu, X. et.An overview of nitrogen deposition and its ecological impacts in China: Environ. Pollut. 159, 22512264. https://doi.org/10.1016/j.envpol.2010.08.002 (2011).

    Article
    PubMed
    CAS

    Google Scholar

  • 11.

    Chen, H.Y. H. and Zhang, T. Data: Responses to litter decomposition, nutrient release, and N addition: A meta analysis of terrestrial ecosystems. Appl. Soil. Ecol. 1, 3542 (2018).


    Google Scholar

  • 12.

    Knorr M., Frey S. & Curtis P. Nitrogen additions litter decomposition: A meta analysis. Ecology 86, 32523257. https://doi.org/10.1890/05-0150 (2005).

    Article

    Google Scholar

  • 13.

    Hobbie S. E. & Vitousek P.M. Nutrient limitation on decomposition of Hawaiian forests Ecology 81, 18671877 (2000).


    Google Scholar

  • 14.

    Zhou, S. X. et.Simulated Nitrogen Deposition significantly reduces forest litter decomposition in a natural evergreen broadleaved forest in Western China’s Rainy Area. Soil 420(12), 135145 (2017).

    CAS

    Google Scholar

  • 15.

    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Changed litter chemistry and long-term N andS addition do not affect trembling Aspen Leaf Litter Decomposition, elemental composition, and enzyme activity in a boreal rainforest. Environ. Pollut. 250, 143154 (2019).

    PubMed
    CAS

    Google Scholar

  • 16.

    Magill A. H. & Aber J. D. The long-term effects of experimental nitrogen adds on foliar soil litter decay and humus production in forest ecosystems. Plant Soil 203, 301311 (1998).

    CAS

    Google Scholar

  • 17.

    Janssens, I. A. et.Reduced forest soil respiration as a result of nitrogen deposition Nat. Geosci. 3, 315322 (2010).

    ADS
    CAS

    Google Scholar

  • 18.

    Zhang, W. et.Litter quality mediated nitrogen effect upon plant litter decomposition regardless soil fauna presence. Ecology 97, 28342843 (2016).

    PubMed

    Google Scholar

  • 19.

    Wang, M. et.The effects of litter-borne nutrient quality and sediment-borne nutrient on macrophyte degradation and nutrient release Hydrobiologia 787, 205215. https://doi.org/10.1007/s10750-016-2961-x (2017).

    Article
    CAS

    Google Scholar

  • 20.

    Talbot, J. M. & Treseder K. K. Interactions of lignin, cellulose and nitrogen drive litter chemistrydecay relations. Ecology 93, 345354 (2012).

    PubMed

    Google Scholar

  • 21.

    Zhang, T. A., Luo, Y. H. and Zhang, T. A. Luo, Y. Appl. Soil Ecol. 128, 3542. https://doi.org/10.1016/j.apsoil.2018.04.004 (2018).

    Article
    ADS

    Google Scholar

  • 22.

    Kuperman R. G. Litter decomposition in oakhickory trees along a historical gradient for nitrogen and sulfur deposition Soil Biol. Biochem. 31, 237244 (1999).

    CAS

    Google Scholar

  • 23.

    Cleveland, C. C. & Townsend, A. R. Significant soil carbon dioxide losses to atmosphere result from nutrient additions to a tropical rainforest. Proc. Natl. Acad. Sci. U.S.A. 103, 1031610321 (2006).

    PubMed
    PubMed Central
    ADS
    CAS

    Google Scholar

  • 24.

    Chen, J. et.Costimulation soil glycosidase activity, soil respiration and nitrogen addition Glob. Change Biol. 23, 13281337 (2017).

    ADS

    Google Scholar

  • 25.

    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. Mo, J. The soil acidification that tropical ecosystems suffer from is due to nitrogen deposition. Glob. Change Biol. 20, 37903801 (2014).

    ADS

    Google Scholar

  • 26.

    Yang, D. Song L. & Jin G. The soil’s C:N is P stoichiometry more sensitive than the leaves C:N. P stoichiometry. This is a four-year experiment on nitrogen addition in a Pinus koraiensis Plantation. Soil 442, 183198. https://doi.org/10.1007/s11104-019-04165-z (2019).

    Article
    CAS

    Google Scholar

  • 27.

    Penuelas, J. et.Human-induced nitrogenphosphorus instabilities alter natural and managed ecosystems all over the globe. Nat. Commun. 4, 2934 (2013).

    PubMed
    ADS

    Google Scholar

  • 28.

    Liu, X. et. Enhanced nitrogen deposition over China. Nature 494, 459462. https://doi.org/10.1038/nature11917 (2013).

    Article
    PubMed
    ADS
    CAS

    Google Scholar

  • 29.

    Kang, Y. et.High-resolution ammonia emissions inventories for China, 1980 to 2012. Atmos. Chem. Phys. 16, 20432058 (2015).

    ADS

    Google Scholar

  • 30.

    Huo, Y. et.Climategrowth relationships of Schrenk Spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains. northwest China Trees 31, 429439 (2017).


    Google Scholar

  • 31.

    Zhonglin, X. et.Topographic and climatic variables influence soil nitrogen, phosphorus and nitrogen: Phosphorus levels in a Picea schrenkianaForest of the Tianshan Mountains. PLoS ONE 13(11), e0204130 (2018).


    Google Scholar

  • 32.

    Zhang, T. et.The impact of climate factors on radial growth patterns at different heights in Schrenk’s spruce (Picea schrenkiana). Trees 34(1), 163175 (2020).


    Google Scholar

  • 33.

    Chen, X., Gong, L. & Liu, Y. The ecological stoichiometry under seasonal snowfall in Tianshan Mountain. Ecosphere 9(11), e02520 (2018).


    Google Scholar

  • 34.

    Gong, L. & Zhao, J. The response of Schrenks Spruce to nitrogen added to its roots (Picea schrenkiana) of the Tianshan mountains, China. PeerJ 7, e8194 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • 35.

    Zhu, H., Zhao, J. Gong, L. & Zhu, H. Zhao, J. Sci. Rep. 11(1), 3839. https://doi.org/10.1038/s41598-021-83151-x (2021).

    Article
    PubMed
    PubMed Central
    ADS
    CAS

    Google Scholar

  • 36.

    Mo, J. et.Two different nutrient-status to N deposition in a tropical Pine plantation in southern China: Decomposition responses of pin (Pinus Massoniana) needles Ann. For. Sci. 65, 405405 (2008).


    Google Scholar

  • 37.

    Wen, Z. et.From 1980 to 2018, China saw a shift in nitrogen deposition. Environ. Int. 144, 106022. https://doi.org/10.1016/j.envint.2020.106022 (2020).

    Article
    PubMed
    CAS

    Google Scholar

  • 38.

    Liu, W. et.Nitrogen enrichment triggers a critical transition in soil bacterial diversity. Ecology 101, e03053. https://doi.org/10.1002/ecy.3053 (2020).

    Article
    PubMed

    Google Scholar

  • 39.

    Yao, M. et.Rate-specific responses to nitrogen deposition in the Leymus Chinensis steppe: Prokaryotic diversity and structure. Soil Biol. Biochem. 79, 8190 (2014).

    CAS

    Google Scholar

  • 40.

    Berg, B. Berg, B. Environ. Rev. 5, 125. https://doi.org/10.1139/a96-017 (1997).

    Article
    CAS

    Google Scholar

  • 41.

    Liu, W. et.The nonlinear responses of Vmax and Km to nitrogen enrichment by hydrolytic and polyphenol-oxidative enzymes are not linear. Soil Biol. Biochem. 141, 107656. https://doi.org/10.1016/j.soilbio.2019.107656 (2020).

    Article
    CAS

    Google Scholar

  • 42.

    Vestgarden L. S. Nitrogen turnover in the early stages of Scots Pine (Pinus SylvestrisL.) Needle litter Decomposition: Effects on internal and external Nitrogen Soil Biol. Biochem. 33, 465474 (2001).

    CAS

    Google Scholar

  • 43.

    Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 17 (2014).

    PubMed
    CAS

    Google Scholar

  • 44.

    Sun, T., Dong, L., Wang, Z., Lu, X. & Mao, Z. Long-term effects of nitrogen deposition on fine root decay and extracellular enzyme activities in temperate forest. Soil Biol. Biochem. 93, 5059 (2016).

    CAS

    Google Scholar

  • 45.

    Sjoberg, G. Persson T., Nilsson S. I., Persson T. and Karlsson P. Degradation in decomposing needle litter of spruce spruce in relation to N. Soil Biol. Biochem. 36, 17611768 (2004).

    CAS

    Google Scholar

  • 46.

    Sinsabaugh R. L. Phenol oxidase, peroxidase, and organic matter dynamics in soil. Soil Biol. Biochem. 42, 391404 (2010).

    CAS

    Google Scholar

  • 47.

    Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A. Parkhurst, D. F. & Carreiro, M.M. Sinsabaugh R. L. Repert D. A. Ecology 81, 23592365. https://doi.org/10.1890/0012-9658(2000)081[2359:meseld]2.0.co;2 (2000).

    Article

    Google Scholar

  • 48.

    Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 26332644 (2008).

    PubMed

    Google Scholar

  • 49.

    Mo, J., Brown, S., Xue, J., Fang, Y. & Li, Z. Response of litter to simulated N deposition at disturbed, rehabilitated and mature forests of subtropical China. Plant Soil 282, 135151 (2006).

    CAS

    Google Scholar

  • 50.

    Ajwa, H. A., Dell, C. J. Rice, C. W. & Ajwa, H.A. Soil Biol. Biochem. 31, 769777. https://doi.org/10.1016/S0038-0717(98)00177-1 (1999).

    Article
    CAS

    Google Scholar

  • 51.

    Li, Q. et.Biochar reduces the effects of nitrogen deposition on soil bacterial community structure and enzyme activities in a Torreya grandis orchard. For. Ecol. Manage. 457, 117717 (2020).


    Google Scholar

  • 52.

    Chen, J. et.Long-term nitrogen loading helps to reduce phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 50775086. https://doi.org/10.1111/gcb.15218 (2020).

    Article
    ADS

    Google Scholar

  • 53.

    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs speed up phosphorus cycle rates in a wide variety terrestrial ecosystems. New Phytol. 193, 696704 (2012).

    PubMed
    CAS

    Google Scholar

  • 54.

    Corrales A. Turner B. L. Tedersoo L. Tedersoo L. Anslan S. & Dalling W. Nitrogen addition alters ectomycorrhizal fungal communities & soil enzyme activities in a tropical montane rainforest. Fungal Ecol. 27, 1423 (2017).


    Google Scholar

  • 55.

    Cusack, D. F. Soil Nitrate levels are linked with decomposition enzyme activities along a gradient of urban-remote tropical forests. Soil Biol. Biochem. 57, 192203 (2013).

    CAS

    Google Scholar

  • 56.

    Xiao, S. et.One-year simulations of acid and nitrogen deposition on soil respiration at a subtropical plantation, China. Forests 11, 235 (2020).


    Google Scholar

  • 57.

    Liang, X. et.Global response patterns of photosynthesis and nitrogen addition in plants: A meta-analysis. Glob. Change Biol. 26, 35853600. https://doi.org/10.1111/gcb.15071 (2020).

    Article
    ADS

    Google Scholar

  • 58.

    Peng, Y. et.Soil biochemical responses of nitrogen addition in a secondary evergreen broadleaved forest ecosystem. Sci. Rep. 7, 27832783. https://doi.org/10.1038/s41598-017-03044-w (2017).

    Article
    PubMed
    PubMed Central
    ADS
    CAS

    Google Scholar

  • 59.

    Tian, D. et.A global analysis of soil pH caused by nitrogen addition Environ. Res. Lett. 10, 024019 (2015).

    ADS

    Google Scholar

  • 60.

    Gill, A. L. et.Globally, experimental nitrogen fertilisation accelerates, then slows the decomposition leaf litter. Ecol. Lett. 24, 802811 (2021).

    PubMed

    Google Scholar

  • 61.

    Cotrufo, M. F. et.Formation of soil organic matter through biochemical and physical processes of litter mass reduction Nat. Geosci. 8, 776779 (2015).

    ADS
    CAS

    Google Scholar

  • 62.

    Lu, X. et.In tropical forests, nitrogen deposition speeds up soil carbon sequestration. Proc. Natl. Acad. Sci. USA 118, e2020790118 (2021).

    PubMed
    PubMed Central
    CAS

    Google Scholar

  • 63.

    Kallenbach, C. M. et.Direct evidence of soil organic matter formation by microbes and its ecophysiological control. Nat. Commun. 7, 110 (2016).


    Google Scholar

  • 64.

    Sun, S. et.Soil warming and nitrogen deposition alter soil metabolism, microbial community structure, and organic carbon composition in a coniferous wood on the eastern Tibetan Plateau. Geoderma 353, 283292 (2019).

    ADS
    CAS

    Google Scholar

  • 65.

    Liu, G. Soil Physical, Chemical Analysis and Description Of Soil Profiles (Elsevier, 1996).


    Google Scholar

  • 66.

    Lotse, E.G. Chemical analysis of eco-friendly materials. Soil Sci. 121, 373 (1976).

    ADS

    Google Scholar

  • 67.

    Anderson, J. M. & Ingram, J. The Handbook of Methods for Tropical Soil Biology and Fertility Soil Sci. 157, 265 (1994).

    ADS

    Google Scholar

  • 68.

    Roberts, J. D. & Rowland, A. P. Cellulose fractionation in decomposition studies using detergent fibre pre-treatment methods. Commun. Soil Plant Anal. 29, 1114 (1998).


    Google Scholar

  • 69.

    Kotrocz, Z. et.Long-term organic matter manipulation can affect soil enzyme activity. Soil Biol. Biochem. 70, 237243 (2014).


    Google Scholar

  • 70.

    Paolo, N. Brunello, C. Stefano, C. and Emilio M. Extraction of phosphatase (urease), proteases, organic CO, and nitrogen from the soil. Soil Sci. Soc. Am. J. https://doi.org/10.2136/SSSAJ1980.03615995004400050028X (1981).

    Article

    Google Scholar

  • 71.

    Schinner F. & Mersi W. V. Xylanase -, CM cellulase – and invertase activities in soil: A new method. Soil Biol. Biochem. 22, 511515 (1990).

    CAS

    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.