Now Reading
The environment and resources are more important than the geodiversity in a tropical biodiversity hotspot. These conditions and resources affect biodiversity and ecosystem function.
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

The environment and resources are more important than the geodiversity in a tropical biodiversity hotspot. These conditions and resources affect biodiversity and ecosystem function.

  • 1.

    Muellner-Riehl, A. N. et. Origins of global mountain plant biodiversity: Testing the mountain-geobiodiversity hypothesis. J. Biogeogr. 46, 28262838 (2019).


    Google Scholar

  • 2.

    Antonelli, A. et.Mountain biodiversity can be affected by climate and geological factors. Nat. Geosci. 11, 718725 (2018).

    ADS
    CAS

    Google Scholar

  • 3.

    Schrodt, F. et.Opinion: To promote sustainable stewardship, it is important to document not only biodiversity, but also geodiversity. Proc. Natl. Acad. Sci. 116, 1615516158 (2019).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 4.

    Alahuhta, J. et.Geodiversity and ecosystem services at large scales: Ecol. Indic. 91, 4756 (2018).


    Google Scholar

  • 5.

    Read, Q. D. et.Beyond averages and numbers: How to relate geodiversity with dimensions of biodiversity. Glob. Ecol. Biogeogr. 29, 696710 (2020).


    Google Scholar

  • 6.

    Daz, S. et.Transformative change is needed because of the pervasive human-driven loss of life on Earth. Science 366, eaax3100 (2019).

    PubMed

    Google Scholar

  • 7.

    Alahuhta, J., Toivanen, M. & Hjort, J. Geodiversitybiodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 4, 23 (2020).

    PubMed

    Google Scholar

  • 8.

    Boothroyd, A. Boothroyd, A. & McHenry M. Old processes and new movements: The inclusion of geodiversity into biological and ecological discourse. Diversity 11, 216 (2019).


    Google Scholar

  • 9.

    Hunter, M. L. Jacobson, G. L. & Webb T. Paleoecology, the coarse-filter approach to maintaining biological biodiversity. Conserv. Biol. 2, 375385 (1988).


    Google Scholar

  • 10.

    Hjort, J. Luoto, M. Geodiversity can be predicted from space. Geomorphology 153154, 7480 (2012).

    ADS

    Google Scholar

  • 11.

    Benito-Calvo, A., Prez-Gonzlez, A., Magri, O. Meza, P. Assessment of regional geodiversity: The Iberian Peninsula. Earth Surf. Process. Landf. 34, 14331445 (2009).

    ADS

    Google Scholar

  • 12.

    F. M. dos Santos and D. Corte Bacci (D.), Saad (A. R.) & da Silva Ferreira (A. T. Geodiversity indicator weighted by multivariate statistics analysis. Appl. Geomat. 12, 361370 (2020).


    Google Scholar

  • 13.

    Crisp, J. R., Ellison, J. C. & Fischer, A. Current trends and future directions for quantitative geodiversity assessment. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133320967219 (2020).

    Article

    Google Scholar

  • 14.

    Pereira, D. I., Pereira, P., Brilha, J. & Santos L. Geodiversity Assessment of Paran State, Brazil: An Innovative Approach. Environ. Manag. 52, 541552 (2013).

    ADS

    Google Scholar

  • 15.

    Gray, M. Geodiversity & geoconservation – What, Why, and How? George Wright Forum 22, 412 (2005).


    Google Scholar

  • 16.

    Ruban D. A. Quantification geodiversity and its reduction Proc. Geol. Assoc. 121, 326333 (2010).


    Google Scholar

  • 17.

    Hjort (J.), Gordon, J. E. Gray & Hunter M. L. Why Geodiversity Matters in Valuing Natures Stage: Why geodiversity is important. Conserv. Biol. 29, 630639 (2015).

    PubMed

    Google Scholar

  • 18.

    Beier, P. & Brost, B. Plan for climate change using land facets: Conserving the arenas and not the actors. Conserv. Biol. J. Soc. Conserv. Biol. 24, 701710 (2010).


    Google Scholar

  • 19.

    Anderson, M. G. and Ferree C.E. Conserving the stage: Climate Change and the Geophysical Underpinnings of Species Diversity. PLoS ONE 5, e11554 (2010).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 20.

    Knudson C., Kay K., & Fisher S. Appraising cultural diversity and geodiversity approaches to building resilience through conservancy. Nat. Clim. Clim. 8, 678685 (2018).

    ADS

    Google Scholar

  • 21.

    Turner, J. Geodiversity: The natural support network of ecosystems. In Landscape Planning with Ecosystem Services: Theories & Methods for Application in Europe 253265 (eds von Haaren, C. et.) (Springer, 2019). https://doi.org/10.1007/978-94-024-1681-7_16.

    Chapter

    Google Scholar

  • 22.

    Fox, N., Graham, L. J., Eigenbrod, F., Bullock, J. M. & Parks, K. E. Incorporating geodiversity in ecosystem service decisions. Ecosyst. People 16, 151159 (2020).


    Google Scholar

  • 23.

    Parks, K. E. & Mulligan M. The relationship between a resource-based geodiversity measure and broad-scale biodiversity patterns. Biodivers. Conserv. 19, 27512766 (2010).


    Google Scholar

  • 24.

    Comer, P. J. et.Geodiversity and conservation decisions: Conserv. Biol. 29, 692701 (2015).

    PubMed

    Google Scholar

  • 25.

    Chakraborty, A. Gray, M. A call for mainstreaming Geodiversity in Nature Conservation Research and Practice. J. Nat. Conserv. 56, 125862 (2020).


    Google Scholar

  • 26.

    Lawler, J. et.The theory and challenges of conserving natures in a time of rapid changes. Conserv. Biol. 29, 618629 (2015).

    PubMed

    Google Scholar

  • 27.

    Beier, P. et.Review of selection-based tests for abiotic surrogates to species representation Conserv. Biol. J. Soc. Conserv. Biol. 29, 668679 (2015).


    Google Scholar

  • 28.

    Purvis, A. & Hector, A. The Measure of Biodiversity. Nature 405, 212219 (2000).

    CAS
    PubMed

    Google Scholar

  • 29.

    Moreno, C. et.An easy guide to useful methods for measuring biodiversity in the Anthropocene. Biodivers. Conserv. 26, 29932998 (2017).


    Google Scholar

  • 30.

    Roswell, M., Dushoff, J. R. Winfree, R. A conceptual guide for measuring species diversity. Oikos 130, 321338 (2021).


    Google Scholar

  • 31.

    Chiarucci A., Bacaro G., & Scheiner S.M. Old and new challenges in using biodiversity to assess biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 366, 24262437 (2011).


    Google Scholar

  • 32.

    Hooper, D. U. et.A consensus of current knowledge: The effects of biodiversity on ecosystem function Ecol. Monogr. 75, 335 (2005).


    Google Scholar

  • 33.

    Hjort (J.), Heikkinen (R. K.) & Luoto (M.). Inclusion of explicit geodiversity measures improve biodiversity models in a boreal environment. Biodivers. Conserv. 21, 34873506 (2012).


    Google Scholar

  • 34.

    Bailey, J. J. Boyd, D. S. Hjort, Hjort. J. Lavers. C. P. & Field. Modeling native and exotic vascular plant species richness. Glob. Ecol. Biogeogr. 26, 763776 (2017).


    Google Scholar

  • 35.

    Zarnetske, P. L. et.Satellite remote sensing can be used to connect biodiversity and geodiversity at different scales. Glob. Ecol. Biogeogr. 28, 548556 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • 36.

    F. Btard. Patch-scale relations between geodiversity, biodiversity in hardrock quarries: Case study of a disused quartzite mining quarry in NW France. Geoheritage 5, 5971 (2013).


    Google Scholar

  • 37.

    Tukiainen, H. et.Spatial relationship between biodiversity, geodiversity and land-use intensity in high latitude landscapes. Landsc. Ecol. 32, 10491063 (2017).


    Google Scholar

  • 38.

    Anderson, M. G. et.Case studies of conservation plans that include geodiversity Conserv. Biol. 29, 680691 (2015).

    CAS
    PubMed

    Google Scholar

  • 39.

    Ren, Y., L, Y., Hu, J. & Yin L. Geodiversity underpins biodiversity but the relationships can be complex: Implications of two biodiversity proxies. Glob. Ecol. Conserv. 31, e01830 (2021).


    Google Scholar

  • 40.

    Homeier, J. Breckle, S.W., Gnter. S., Rollenbeck. R. T. and Leuschner. Tree diversity, forest structure, and productivity along altitudinal gradients in an Ecuadorian montane rainforest: Ecuadorian Montane forest structure and diversity. Biotropica 42, 140148 (2010).


    Google Scholar

  • 41.

    Krashevska, V., Bonkowski, M., Maraun, M. & Scheu, S. Testate amoebae(protista). An elevational gradient in the Ecuadorian tropical mountain rain forest. Pedobiologia 51, 319331 (2007).


    Google Scholar

  • 42.

    Zhalnina, K. et.The pH of the soil determines the microbial diversity in the park grass experiment. Microb. Ecol. 69, 395406 (2015).

    CAS
    PubMed

    Google Scholar

  • 43.

    Fierer (N.), Craine, J. M. McLauchlan K. & Schimel J. P. Litter quality, temperature sensitivity of decomposition. Ecology 86, 320326 (2005).


    Google Scholar

  • 44.

    Gibb, H. et.Climate mediates the effects that disturbances have on ant assemblage structure. Proc. R. Soc. B Biol. Sci. 282, 20150418 (2015).


    Google Scholar

  • 45.

    Sanders, N. J. and Lessard J.P., Fitzpatrick M. C., & Dunn R. R. The temperature, but not productivity nor geometry, predicts elevational diversities in ants across spatial grain boundaries. Glob. Ecol. Biogeogr. 16, 640649 (2007).


    Google Scholar

  • 46.

    Paaijmans, K. P. et.Temperature variation makes ectotherms sensitive to climate change. Glob. Change Biol. 19, 23732380 (2013).

    ADS

    Google Scholar

  • 47.

    McCain, C. M. Global Analysis of Bird Elevational Diversity. Glob. Ecol. Biogeogr. 18, 346360 (2009).


    Google Scholar

  • 48.

    Tews, J. et. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures: Animal species diversity driven by habitat heterogeneity. J. Biogeogr. 31, 7992 (2004).


    Google Scholar

  • 49.

    Rahbek, C. et.Humboldts Enigma: What causes global patterns in mountain biodiversity? Science 365, 11081113 (2019).

    ADS
    CAS
    PubMed

    Google Scholar

  • 50.

    Hofhansl, F. et.Climatic and edaphic control over tropical forest diversity, and vegetation carbon storage Sci. Rep. 10, 5066 (2020).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 51.

    Peters, M. K. et.Predictors of elevational biodiversity gradients shift from single taxa level to multi-taxa level. Nat. Commun. 7, 13736 (2016).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 52.

    Gagic, V. et.Functional identity and diversity of animals are better indicators of ecosystem functioning than species-based indexes. Proc. R. Soc. B Biol. Sci. 282, 20142620 (2015).


    Google Scholar

  • 53.

    Kraft, N. J. B., Godoy, O. & Levine J. M. Plant functional characteristics and the multidimensional nature species coexistence. Proc. Natl. Acad. Sci. 112, 797802 (2015).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 54.

    Cadotte, M. W. Functional attributes explain ecosystem function via opposing mechanisms. Ecol. Lett. 20, 989996 (2017).

    PubMed

    Google Scholar

  • 55.

    Hillebrand, H. et.Conservation and monitoring of biodiversity changes is difficult because they are not coupled with trends in species richness. J. Appl. Ecol. 55, 169184 (2018).


    Google Scholar

  • 56.

    Whittaker R. H. Evolution, measurement and diversity of species. Taxon 21, 213251 (1972).


    Google Scholar

  • 57.

    Socolar, J. B., Gilroy J. J., Kunin W. E., & Edwards D. P. How can beta-diversity help biodiversity conservation? Trends Ecol. Evol. 31, 6780 (2016).

    PubMed

    Google Scholar

  • 58.

    Legendre, P. & De Cceres M. Beta diversity as the variance in community data: Partitioning and dissimilarity coefficients. Ecol. Lett. 16, 951963 (2013).

    PubMed

    Google Scholar

  • 59.

    Lichstein, J. W. Multiple Regression on Distance Matrixes: A Multivariate Spatial Analysis Tool. Plant Ecol. 188, 117131 (2007).


    Google Scholar

  • 60.

    Tuomisto, H. & Ruokolainen, K. Analyzing or explaining beta diversity? Understanding the targets of various methods of analysis. Ecology 87, 26972708 (2006).

    PubMed

    Google Scholar

  • 61.

    Peres-Neto, P. R. & Jackson, D. A. How well can multivariate data set matches match? Procrustean superimposition is superior to the Mantel test. Oecologia 129, 169178 (2001).

    ADS
    PubMed

    Google Scholar

  • 62.

    Peres-Neto P. R. Legendre P., Dray S. & Borcard D. Variation partitioning species data matrices : Estimation & comparison of fractions. Ecology 87, 26142625 (2006).

    PubMed

    Google Scholar

  • 63.

    Hillebrand, H. & Matthiessen B. Biodiversity within a complex world: Consolidation of progress in functional biodiversity research: Consolidation of progress in BDEF research. Ecol. Lett. 12, 14051419 (2009).

    PubMed

    Google Scholar

  • 64.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. B. Nature 403, 853858 (2000).

    ADS
    CAS
    PubMed

    Google Scholar

  • 65.

    Bendix, J. et.A framework for predicting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia 195, 589600 (2021).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 66.

    Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. Gradients in the Ecuadorian Tropical Mountain Ecosystem. ISBN: 978-3-540-73525-0
    (Springer, 2008).


    Google Scholar

  • 67.

    South Ecuador’s Science-Directed Approach to Landscape Restoration and Sustainable Use – Cross-Scale Monitoring and Monitoring of Biodiversity, Ecosystem Functions and Biodiversity – A Science-Directed Approach(PAK823825 South Ecuador 2017 Platform for Ecosystem Monitoring, Research and Biodiversity Monitoring.

  • 68.

    Beck, E. et. Ecosystem Services, Biodiversity, and Environmental Change in a Tropical Mountain Ecosystem in South Ecuador. ISBN: 978-3-642-38136-2 (Springer, 2013).


    Google Scholar

  • 69.

    Homeier, J. C. & Leuschner C. Factors affecting the productivity of tropical Andean trees: Climate and soil are far more important than tree variety. Biogeosciences 18, 15251541 (2021).

    ADS
    CAS

    Google Scholar

  • 70.

    V. Krashevska. D. Sandmann. Maraun. M. & Scheu. S. Effects of precipitation exclusion on microorganisms in montane rainforests. Oecologia 170, 10671076 (2012).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 71.

    V. Krashevska. D. Sandmann. Maraun. M. & Scheu. S. Moderate changes to nutrient input alter tropical protist and microbial communities, and belowground links. ISME J. 8, 11261134 (2014).

    CAS
    PubMed

    Google Scholar

  • 72.

    Tiede, Y. et.The ant as an indicator of ecosystem processes and environmental change Ecol. Indic. 83, 527537 (2017).


    Google Scholar

  • 73.

    Santilln, V. et.The tropical elevational gradient is responsible for the variation in temperature and precipitation that causes spatio-temporal variations in bird assemblages. PLoS ONE 13, e0196179 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • 74.

    Hsieh T. C. Ma, K. H. and Chao, A. INEXT: An R Package for Rarefaction and Extrapolation of Species Diversity (HNumbers that are not healthy. Methods Ecol. Evol. 7, 14511456 (2016).


    Google Scholar

  • 75.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT – Interpolation and Extrapolation to Species Diversity. R package version 2.0.20, http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2020).

  • 76.

    Chao, A. et.Rarefaction and extrapolation using Hill numbers: A framework that allows for sampling and estimation in species biodiversity studies. Ecol. Monogr. 84, 4567 (2014).


    Google Scholar

  • 77.

    Wallis, C. I. B. et.Multispectral remote sensing data is used to model tropical montane forest biomass, productivity, and canopy traits. Remote Sens. Environ. 225, 7792 (2019).

    ADS

    Google Scholar

  • 78.

    Keuskamp, J. A., Dingemans B. J. J.; Lehtinen T., Sarneel J. M. & Hefting M. M. Tea Bag Index – A novel way to collect uniform data on decomposition across ecosystems Methods Ecol. Evol. 4, 10701075 (2013).


    Google Scholar

  • 79.

    Quitin, M. et.Effects of forest fragmentation on the interaction networks between plant and bird in the tropical Andes are elevation-dependent. Ecography 41, 14971506 (2018).


    Google Scholar

  • 80.

    Fries, A. et.The thermal structure and regionalization of the Andean mountain ecosystem, a megadiverse ecosystem in southern Ecuador. Erdkunde 63, 321335 (2009).


    Google Scholar

  • 81.

    Fries, A., Rollenbeck, R., Nau, T., Peters, T. & Bendix, J. Near surface air humidity in an Andean mountain ecosystem that is megadiverse and its regionalization. Agric. For. Meteorol. 152, 1730 (2012).

    ADS

    Google Scholar

  • 82.

    Zvoleff, A. glcm – Calculate textures using grey-level co-occurrence matrixes (GLCMs).. R package version 1.6.1 (2016).

  • 83.

    Wallis, C. I. B. et.Remote sensing improves the prediction of tropical montane species diversity, but performance varies among taxa. Ecol. Indic. 83, 538549 (2017).


    Google Scholar

  • 84.

    Wolf, K., Veldkamp, E., Homeier, J. Martinson, George O. Nitrogen availability links forest product, soil nitrous oxide, and the nitric oxide fluxes for a tropical montane forests in southern Ecuador:2O + NO flux in tropical montane forests. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003876 (2011).

    Article

    Google Scholar

  • 85.

    Fisher, W. D. Grouping for Maximum Homogeneity J. Am. Stat. Assoc. 53, 789798 (1958).

    MathSciNet
    MATH

    Google Scholar

  • 86.

    Bivand, R. classInt: Choose Univariate Class Intervals (2020).

  • 87.

    Oksanen, J. et. Vegan Community Ecology Program (2020).

  • 88.

    Package for Community Ecology. Vegan. https://CRAN.R-project.org/package=vegan.

  • 89.

    Wood, S. N. An introduction to generalized additive models: R(Chapman and Hall/CRC 2017).

    MATH

    Google Scholar

  • 90.

    Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium, prediction mismatch, and species distribution models. Divers. Distrib. 19, 13331338 (2013).


    Google Scholar

  • 91.

    Lotz, T., Nieschulze, J., Bendix, J., Dobbermann, M. & Knig-Ries, B. Are they different or the same? Intercomparison between two major German project databases to support interdisciplinary collaborative functional biology research. Ecol. Inform. 8, 1019 (2012).


    Google Scholar

  • 92.

    Gttlicher, D. et.Land-cover classification using Landsat ETM+ Data in southern Ecuador as a base for SVAT modelling. Int. J. Remote Sens. 30, 18671886 (2009).


    Google Scholar

  • 93.

    Deng, Y. Wilson & DEM Bauer. B. O. resolution dependencies across terrain attributes. Int. J. Geogr. Inf. Sci. 21, 187213 (2007).


    Google Scholar

  • 94.

    Weiss, M. & Baret, F. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER Version 1.1. in S2 Toolbox Level 2 Product algorithms, v1.1 53.

  • 95.

    Unger, M., Homeier, J. Relationships between leaf area index, below canopy light availability, and tree diversity along a transect in NE Ecuador from tropical lowland forests to montane forest. Trop. Ecol. 54, 3345 (2013).


    Google Scholar

  • 96.

    V. Krashevska, V. Maraun, M. & Scheu S. Micro-and macroscale changes in density, diversity and size Testate amoebaeThe tropical montane rain forest of southern Ecuador. Acta Protozool. 49, 1728 (2010).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.