Now Reading
Infrastructure impacts of permafrost loss
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Infrastructure impacts of permafrost loss

  • 1.

    Box, J. E. et al. 19712017: Key indicators of Arctic Climate Change Environ. Res. Lett. 14, 045010 (2019).


    Google Scholar

  • 2.

    Vincent, W. F. The Palgrave Handbook of Arctic Policy and Politics (eds Coates, K. S. & Holroyd, C.) 507526 (Palgrave Macmillan, 2020).

  • 3.

    Obu, J. How much of the Earth’s top is covered by permafrost J. Geophys. Res. Earth Surf. 126, e2021JF006123 (2021).


    Google Scholar

  • 4.

    Smith, S. L., ONeill, H. B., Isaksen, K., Noetzli, J. Romanovsky, V.E. Permafrost’s changing thermal state Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).

    Article

    Google Scholar

  • 5.

    Heijmans, M. M. P. D. et al. Tundra vegetation alter trajectories in permafrost environments. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).

    Article

    Google Scholar

  • 6.

    Miner, K. R. et al. Permafrost carbon emission in a changing Arctic Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).

    Article

    Google Scholar

  • 7.

    Voigt, C. et al. Permafrost-affected soils can emit nitrogen oxide. Nat. Rev. Earth. Environ. 1, 420434 (2020).


    Google Scholar

  • 8.

    Jones, B. M. et al. Systems of lakes and drained lakes basins in Arctic permafrost and Boreal regions. Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00238-9 (2022).

    Article

    Google Scholar

  • 9.

    Whiteman G., Hope C. & Wadhams P. Arctic change: huge costs of climate science. Nature 499, 401403 (2013).


    Google Scholar

  • 10.

    Melvin, A. M. et al. Climate change damages Alaska’s infrastructure and the economics for proactive adaptation. Proc. Natl Acad. Sci. USA 114, E122E131 (2017).


    Google Scholar

  • 11.

    Alvarez J. Yumashev D. & Whiteman G. Framework for assessing economic impacts of Arctic Change Ambio 49, 407418 (2020).


    Google Scholar

  • 12.

    Hjort, J. et al. Permafrost degradation puts Arctic infrastructure at risk by midcentury. Nat. Commun. 9, 5147 (2018).


    Google Scholar

  • 13.

    Streletskiy D. Snow and Ice-Related Risks, Hazards, and Disasters (eds Haeberli W. & Whiteman C.) 297322 (Elsevier, 2021).

  • 14.

    Nelson, F. E., Anisimov, O. A. Shiklomanov N. I. Subsidence Risk from thawing Permafrost. Nature 410, 889890 (2001).


    Google Scholar

  • 15.

    Nelson, F. E. Unfrozen at the time Science 299, 16731675 (2003).


    Google Scholar

  • 16.

    Instanes, A. et al. Arctic infrastructure and resources are being affected by changes in freshwater systems. J. Geophys. Res. Biogeo. 121, 567585 (2016).


    Google Scholar

  • 17.

    Grebenets V., Streletskiy D. & Shiklomanov N. Geotechnical safety concerns in the cities of the polar regions. Geog. Environ. Sustain. 5, 104119 (2012).


    Google Scholar

  • 18.

    Rajendran, S. et al. Satellite data used to monitor oil spillage in Norilsk (Russia) Sci. Rep. 11, 3817 (2021).


    Google Scholar

  • 19.

    Streletskiy, D. A. et al. Assessment of climate change impacts upon buildings, structures, and infrastructure in the Russian regions with permafrost. Environ. Res. Lett. 14, 025003 (2019).


    Google Scholar

  • 20.

    Suter, L., Streletskiy D., & Shiklomanov N. Assessment of the impact of climate change on critical infrastructure in the circumpolar. Arctic. Polar Geogr. 42, 267286 (2019).


    Google Scholar

  • 21.

    AMAP. SWIPA: Snow, Water, Ice, and Permafrost in Arctic (SWIPA). (ed. Symon, C.

  • 22.

    Gautier, D. L. et al. Assessment of Arctic undiscovered oil and natural gas. Science 324, 11751179 (2009).


    Google Scholar

  • 23.

    Cheng G. D. & Zhao L. The problems of permafrost during the development the QinghaiXizang Plateau. Quat. Sci. 20, 521531 (2000).


    Google Scholar

  • 24.

    Larsen, J. N. et al. In Climate Change 2014: Adaptation, Impacts, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II in the Fifth Assessment Report of Intergovernmental Panel of Climate Change (eds Barros V. J. et al.) 15671612 (Cambridge Univ. Press, 2014).

  • 25.

    Bordignon F. A scientometric assessment of permafrost research using textual analysis (19482020). Scientometrics 126, 417436 (2021).


    Google Scholar

  • 26.

    Instanes, A. et al. Instanes, A. Arctic Climate Impact Assessment(eds Symon C., Arris L. & Heal A.) 908944 (Cambridge Univ. Press, 2005).

  • 27.

    Callaghan, T. V. et al. In SWIPA: Snow, Water, Ice, and Permafrost in Arctic (SWIPA). (ed. Symon, C.

  • 28.

    Brooks, H., Niu F. and Dor, G. Permafr. Periglac. Process. 27, 352354 (2016).


    Google Scholar

  • 29.

    Ford, J. D. et al. Evaluating climate change vulnerability assessment: A case study of research focusing primarily on the built environment in northern Canada. Mitig. Adapt. Strat. Glob. Chang. 20, 12671288 (2015).


    Google Scholar

  • 30.

    Harris, S. A., Brouchkov, A. & Cheng, G. Geocryology – Characteristics and Uses of Frozen Ground or Permafrost Landscapes (CRC Press, 2017).

  • 31.

    Andersland, O. B. & Ladanyi, B. Frozen Ground Engineering: An Introduction(Springer Science & Business Media (2013)

  • 32.

    Khrustalev, L. N. Geotechnical Fundamentals of Permafrost Areas [Russian](Moscow State University 2005).

  • 33.

    Shur, Y. L. & Goering, D. J. in Permafrost Soils (ed. Margesin, R.) 251260 (Springer, 2009).

  • 34.

    Biskaborn, B. K. et al. Permafrost is warming on a global scale Nat. Commun. 10, 264 (2019).


    Google Scholar

  • 35.

    Chen, L., Fortier, D., McKenzie, J. & Sliger M. Heat advection and the thermal regime of roads constructed on permafrost. Hydrol. Process. 34, 16471664 (2020).


    Google Scholar

  • 36.

    Bjella, K. L. et al. Improvement of assessment tools and design methodologies for building on permafrost under warming conditions. ERDC https://hdl.handle.net/11681/38879 (2020).

  • 37.

    Larsen, P. H. et al. Future costs of Alaska’s infrastructure at risk from climate changes: Estimates Glob. Environ. Change 18, 442457 (2008).


    Google Scholar

  • 38.

    Dumais, S. & Konrad J. M. Large-strain nonlinear thaw consolid analysis of the Inuvik warm oil experimental pipeline buried under permafrost. J. Cold Reg. Eng. 33, 04018014 (2019).


    Google Scholar

  • 39.

    Wu, B., Sheng, Y., Yu, Q., Chen, J. Ma, W. Engineering on the roof of our world in a permafrost landscape. Permafr. Periglac. Process. 31, 417428 (2020).


    Google Scholar

  • 40.

    Streletskiy, D. A., Shiklomanov, N. I. Nelson, F. E. Permafrost infrastructure and climate change: a GIS-based landscape approach geotechnical modelling. Arct. Antarct. Alp. Res. 44, 368380 (2012).


    Google Scholar

  • 41.

    Instanes, A. Climate warming scenarios in coastal permafrost design case studies from Svalbard (Norwest Russia). Cold Reg. Sci. Tech. 131, 7687 (2016).


    Google Scholar

  • 42.

    Abram, N. et al. Special report by IPCC on the oceans and cryosphere in a changing environment Intergovernmental Panel on Climate Change https://www.ipcc.ch/srocc/home/ (2019).

  • 43.

    Arneth, A. et al. Special IPCC report on climate change, land. Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/srccl/ (2019).

  • 44.

    Kanevski, M., Connor, B., Schnabel, W. & Bjella, K. in Engineering in Cold Regions 2019(eds Bilodeau (J.-P.), Nadeau (D. F.), Fortier (D.) & Conciatori (D.) 588596 (American Society of Civil Engineers, 2019).

  • 45.

    Niu, F. and Luo, J. Lin, Z., Liu M & Yin G. Thaw-induced slope problems and susceptibility mapping in the QinghaiTibet Engineering Corridor, China. Nat. Hazards 74, 16671682 (2014).


    Google Scholar

  • 46.

    Bintanja, R. & Andry, O. Towards an Arctic that is rain-dominated. Nat. Clim. Chang. 7, 263267 (2017).


    Google Scholar

  • 47.

    Burke, E. J., Zhang, Y. & Krinner G. Evaluating permafrost physics and their sensitivity in the Coupled Model Intercomparison Project 6(CMIP6) models. Cryosphere 14, 31553174 (2020).


    Google Scholar

  • 48.

    DelIne, P. et al. in Snow and Ice-Related Risks, Hazards, and Disasters (eds Haeberli, W. & Whiteman, C.) 501540 (Elsevier, 2021).

  • 49.

    Mekonnen, Z. A., Riley W. J. Grant R. F. Romanovsky V. E. Permafrost degrading in warmer climates is comparable to changes in precipitation. Environ. Res. Lett. 16, 024008 (2021).


    Google Scholar

  • 50.

    Romanovsky, V. E. et al. Terrestrial permafrost. Bull. Amer. Meteor. Soc. 101, S153S156 (2020).


    Google Scholar

  • 51.

    Instanes, A. & Anisimov, O. in Proc. 9th Int. Conf. Permafrost(eds Kane D. & Hinkel K. M.) 7779784 (University of Alaska Fairbanks (2008)

  • 52.

    Yokohata, T. et al. Future projections and improvement of the global land surface model’s permafrost processes. Prog. Prog. Sci. 7, 69 (2020).


    Google Scholar

  • 53.

    Dobiski, W. Permafrost active Layer. Earth Sci. Rev. 208, 103301 (2020).


    Google Scholar

  • 54.

    Luo, D. et al. Recent changes in the thickness of the active layer across the northern hemisphere. Environ. Earth Sci. 75, 555 (2016).


    Google Scholar

  • 55.

    Peng, X. et al. Changes in the spatial and temporal distribution of active layer thickness in the northern hemisphere under current and projected climate. J. Clim. 31, 251266 (2018).


    Google Scholar

  • 56.

    Liu, J., Wang, T., Tai, B. Lv, P. A method to frost jack single piles in permafrost. Acta Geotech. 15, 455470 (2020).


    Google Scholar

  • 57.

    Yu, W. et al. Engineering risk analysis for cold regions: state-of-the art and perspectives Cold Reg. Sci. Technol. 171, 102963 (2020).


    Google Scholar

  • 58.

    Ma, W. & Wang, D. Y. Frozen Soil Mechanics (Science Press, 2014).

  • 59.

    Ramage, J. et al. The Arctic has a population that lives on permafrost. Popul. Environ. 43, 2238 (2021).


    Google Scholar

  • 60.

    Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamic and response to climate change in CMIP5 Earth System Models. J. Clim. 26, 18771900 (2013).


    Google Scholar

  • 61.

    McGuire, A. D. et al. Dependence of the trajectory of climate-change on the evolution carbon dynamics in northern permafrost. Proc. Natl Acad. Sci. USA 115, 38823887 (2018).


    Google Scholar

  • 62.

    ONeill, H. B. Roy-Leveillee P., Lebedeva L. & Ling F. Recent advancements (2010-2019) in the study taliks. Permafr. Periglac. Process. 31, 346357 (2020).


    Google Scholar

  • 63.

    Shiklomanov, N. I., Streletskiy, D. A., Grebenets, V. I. & Suter L. Conquering permafrost: Urban infrastructure development in Norilsk (Russia). Polar Geogr. 40, 273290 (2017).


    Google Scholar

  • 64.

    Shiklomanov N. I. & Nelson F. E. in Treatise on Geomorphology (eds Shroder, J., Giardino, R. & Harbor, J.) 354373 (Academic, 2013).

  • 65.

    Luo, J.; Niu, F.; Lin, Z.; Liu, M. & Yin. G. Thermokarst Lake Changes between 1969 and 2010. Beilu River Basin, QinghaiTibet Plateau. China. Sci. Bull. 60, 556564 (2015).


    Google Scholar

  • 66.

    Turetsky, M. R. et al. Permafrost melt is accelerating carbon emission. Nature 569, 3234 (2019).


    Google Scholar

  • 67.

    Niu, F., Luo, J., Lin, Z., Fang, J. & Liu M. Thaw-induced slope problems and stability analyses in the QinghaiTibet Plateau. China. Landslides 13, 5565 (2016).


    Google Scholar

  • 68.

    Lewkowicz A. G. & Way R. G. Extremes in summer climate trigger thousands upon thousands of thermokarst landslides within a high Arctic environment. Nat. Commun. 10, 1329 (2019).


    Google Scholar

  • 69.

    Irrgang, A. M. et al. Arctic coasts are in transition: Drivers, dynamics, and impacts Nat. Rev. Earth. Environ. https://doi.org/10.1038/s43017-021-00232-1 (2022).

    Article

    Google Scholar

  • 70.

    Douglas, T. A. Turetsky M. R. & Koven C. D. Increased rainfall encourages permafrost thaw throughout a variety Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).


    Google Scholar

  • 71.

    Anisimov, O. A. et al. In Climate Change 2007: Vulnerability, Adaptation, and Impacts. Contribution of Working Group II of the Fourth Assessment Report by the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. Hanson C. E.) 653685 Cambridge Univ. Press, 2007).

  • 72.

    Kronik, Y. Kronik, Y. Proc. 2nd Conf. Russian Geocryologists (ed. Melnikov, V.) 138146 (Moscow State University, 2001).

  • 73.

    Wu, Q. B., Dong, X. F., Liu, Y. Z. & Jin, H. J. Responses of permafrost to climate change and engineering building on the QinghaiTibet Plateau (China). Arct. Antarct. Alp. Res. 39, 682687 (2007).


    Google Scholar

  • 74.

    Khrustalev, L. N., Parmuzin, S. Y. & Emelyanova, L. V. Reliability and Adaptability of Northern Infrastructure to Changes in Climate(University Book Press (2011)

  • 75.

    Khrustalev L. N. & Davidova I. V. Forecast and account of climate warming at estimation foundation reliability for buildings within the permafrost zones. Earth Cryos. 11, 6875 (2007).


    Google Scholar

  • 76.

    Gibson, C. M.; Brinkman T., Cold H., Brown D. & Turetsky M. Identifying the increasing hazards to northern land-users from permafrost-thaw: Integrating scientific and community-based approaches. Environ. Res. Lett. 16, 064047 (2021).


    Google Scholar

  • 77.

    Nyland, K. E. et al. Traditional Iupiat ice rooms (SIUAQ), Barrow Alaska: temperature monitoring and distribution. Geogr. Rev. 107, 143158 (2017).


    Google Scholar

  • 78.

    Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. & Brown, J. Statistics and characteristics of ground-ice distribution in northern hemisphere. Polar Geogr. 31, 4768 (2008).


    Google Scholar

  • 79.

    Streletskiy D. & Shiklomanov N. in Sustaining Russia’s Arctic Cities: Resource Politics. Migration. And Climate Change (ed. Orttung, R. W.) 201220 (Berghahn Press, 2016).

  • 80.

    Streletskiy D. and Shiklomanov N. & Grebenets V. Changes in foundation bearing capacities due to climate warming. Earth Cryos. 16, 2232 (2012).


    Google Scholar

  • 81.

    Streletskiy, D. A., Shiklomanov, N. I. & Hatleberg, E. in Proc. 10th Int. Conf. Permafrost (ed. Hinkel, K. M.) 407412 (Northern Publisher, 2012).

  • 82.

    Harris, C. et al. Permafrost in Europe: Monitoring and modeling thermal, geomorphological, and geotechnical reactions. Earth Sci. Rev. 92, 117171 (2009).


    Google Scholar

  • 83.

    Humlum, O., Instanes, A. & Sollid J. L. Permafrost at Svalbard: A review of research history and climatic background. Polar Res. 22, 191215 (2003).


    Google Scholar

  • 84.

    Instanes A. in Proc. 8th Int. Permafrost Conf. (eds Arenson, L. U., Phillips, M. & Springman, S. M.) 461466 (CRC Press, 2003).

  • 85.

    Phillips, M. et al. Monitoring and reconstruction a chairlift midway station in creeping Permafrost terrain, Grchen (Swiss Alps). Cold. Reg. Sci. Technol. 47, 3242 (2007).


    Google Scholar

  • 86.

    Jasklski, M. W., Pawowski, . Strzelecki M. C. High Arctic coastlines at risk: A case study of coastal area development and degradation in Longyearbyen (Adventfjorden Svalbard) Land. Degrad. Dev. 29, 25142524 (2018).


    Google Scholar

  • 87.

    Duvillard P. A., Ravanel L. Marcer M. & Schoeneich P. Recent development of damage to infrastructure on permafrost from the French Alps. Reg. Environ. Change 19, 12811293 (2019).


    Google Scholar

  • 88.

    Jungsberg, L. et al. Adaptive capacity to manage Permafrost Degradation in Northwest Greenland Polar Geogr. https://doi.org/10.1080/1088937X.2021.1995067 (2021).

    Article

    Google Scholar

  • 89.

    Dor, G. & Zubeck, H. Cold Region Pavement Engineering Vol. Vol.

  • 90.

    Connor, B. & Harper, J. How vulnerable are Alaska’s transportation systems to climate change? Trans. Res. N. 284, 2329 (2013).


    Google Scholar

  • 91.

    Brooks, H. Quantitative Risk Analysis of Linear Infrastructure Supported By Permafrost: Methodology and Computer Program. Doctoral dissertation, Univ. Laval (2018).

  • 92.

    McHattie, R. L. & Esch, D. C. in Proc. 5th Int. Conf. Permafrost (ed. Senneset, K.) 12921297 (Tapis Publishers, 1988).

  • 93.

    Tetra Tech EBA Inc. Report on Inuvik Airport Runway Settlement Field(Government of Northwest Territories. Department of Transportation. Airport Division, 2014).

  • 94.

    Calmels, F. et al. Vulnerability to the North Alaska Highway from Permafrost Thaw – A Field Guide and Data Synthesis (ed. Halladay, P.) (Yukon Research Center, 2015).

  • 95.

    Calmels F. Roy, L.P., Grandmont K. & Pugh RA. Summary of Climate-and Geohazard-related Vulnerabilities in the Dempster Highway Corridor(Yukon Research Centre (2018)

  • 96.

    Burn, C. et al. In GEOQubec2015: Proc. 68th Canadian Geotechnical Congress. 7th Canadian Permafrost Conf.2123 September 2015 (Paper 705 – Canadian Geotechnical Society, 2015).

  • 97.

    De Guzman, E. M. B., Alfaro, M., Dor, G. & Arenson, L. U. The Arctic corridor’s highway embankments were constructed in winter conditions. Can. Geotech. J. 58, 722736 (2021).


    Google Scholar

  • 98.

    LHrault, E., Allard, M., Barrette, C., Dor, G. & Sarrazin, D. Investigations gotechniques, caractrisation du perglisol et stratgie dadaptation dans un contexte de changements climatiques pour les aroports dUmiujaq, Inukjuak, Puvirnituq, Akulivik, Salluit, Quaqtaq, Kangirsuk et Tasiujaq, Nunavik. Final rapport(Center for Nordic Studies at Laval University, 2012).

  • 99.

    Levitt, M. Nation-Building at home, Vigilance Beyond: Preparing For the Coming Decades In the Arctic(House of Commons Ottawa 2019, 2019).

  • 100.

    Zou, D. et al. A new map showing the distribution of permafrost on the Tibetan plateau Cryosphere 11, 25272542 (2017).


    Google Scholar

  • 101.

    Huang, Y. Z., Zhang, F. L. & Yang, X. Based on cryosphere function accounting, economic growth contribution and spatial impact of the Tibet highway. J. Glaciol. Geocryo. 41, 719729 (2019).


    Google Scholar

  • 102.

    Cheng G. D. Influences local factors on permafrost appearance and their implications to QinghaiXizang Railway Design. Sci. China Earth Sci. 47, 704709 (2004).


    Google Scholar

  • 103.

    Ma, W., Mu, Y., Wu, Q., Sun, Z. & Liu. Characteristics of embankment formation along the QinghaiTibet Railway through permafrost. Cold Reg. Sci. Technol. 67, 178186 (2011).


    Google Scholar

  • 104.

    Chai, M. et al. Characteristics and causes of asphalt pavement damage in degraded permafrost regions: case Study of the QinghaiTibet Highway in China. J. Cold Reg. Eng. 32, 05018003 (2018).


    Google Scholar

  • 105.

    Wang, S., Chen, J., Zhang, J. & Li, Z. Technology for highway construction in the permafrost area of the QinghaiTibet plateau. Sci. China Technol. Sci. 52, 497506 (2009).


    Google Scholar

  • 106.

    Zhang, J., Huo, M. & Chen, J. Stability Technical Problems and Countermeasures to Highway Roadbeds (China Communication, 2008).

  • 107.

    Ma, W., Qi, J. L. & Wu, Q. B. Analysis of the deformations of embankments on QinghaiTibet Railway. J. Geotechn. Geoenviron. Eng. 134, 16451654 (2008).


    Google Scholar

  • 108.

    Wang, J. & Wu, Q. Settlement analysis of the transition section of the embankment bridge in QinghaiTibet Railway’s Permafrost Region. J. Glaciol. Geocryol. 39, 7985 (2017).


    Google Scholar

  • 109.

    Schweikert, A., Chinowsky, P., Kwiatkowski, K. & Espinet, X. The infrastructure planning system support system: Analyzing and predicting the effects of climate change on road infrastructure development. Transp. Policy 35, 146153 (2014).


    Google Scholar

  • 110.

    Chappin E. J. L., & van der Lei T. Adaptation and mitigation of climate change-related infrastructures: A socio-technical system perspective. Util. Policy 31, 1017 (2014).


    Google Scholar

  • 111.

    Anisimov, O. Reneva, S. Permafrost & changing climate: The Russian perspective. Ambio 35, 169175 (2006).


    Google Scholar

  • 112.

    Zhang, Z. Wu, Q. Freezethaw climate change and zonation in QinghaiTibet Plateau permafrost. Nat. Hazards 61, 403423 (2012).


    Google Scholar

  • 113.

    Hong, E., Perkins, R. & Trainor, S. Thaw settlement hazard from permafrost due to climate warming in Alaska Arctic 67, 93103 (2014).


    Google Scholar

  • 114.

    Nelson, F. E., Anisimov, O. A. & Shiklomanov, N. I. Climate change and hazard zonation within the circum-Arctic Permafrost Regions. Nat. Hazards 26, 203225 (2002).


    Google Scholar

  • 115.

    Daanen, R. P. et al. Assessment of permafrost degrading risk zones using simulation models Cryosphere 5, 10431056 (2011).


    Google Scholar

  • 116.

    Ni, J. et al. Assessment of the potential thaw settlement danger in QinghaiTibet Plateau. Sci. Total. Environ. 776, 145855 (2021).


    Google Scholar

  • 117.

    Karjalainen, O. et al. Geohazard indices and circumpolar permafrost maps for near-future infrastructure risks assessments Sci. Data 6, 190037 (2019).


    Google Scholar

  • 118.

    Shiklomanov, N. I., Streletskiy, D. A., Swales, T. B. & Kokorev, V. A. Climate change and stability in Russian permafrost areas: Prognostic assessment based upon GCM climate projections. Geogr. Rev. 107, 125142 (2017).


    Google Scholar

  • 119.

    Dor, M. & Burton, I. Costs of adaptation to climate change in Canada: A stratified estimate by sector and region: Social infrastructure (Brock University, 2001).

  • 120.

    Porfiriev, B. N. et al. Climate change and the Russian Arctic: The impact of climate change on economic growth, specific sectors development, and economic growth. Arctic Ecol. Econ. 4, 417 (2017).


    Google Scholar

  • 121.

    B. Porfiriev. D. Eliseev. D. Streletskiy. Economic assessment permafrost damage effects on road infrastructure sustainability under climate changes in the Russian Arctic. Her. Russ. Acad. Sci. 89, 567576 (2019).


    Google Scholar

  • 122.

    Badina S. V. Predictions regarding socioeconomic risks in Russia’s Arctic cryolithic Zone in the context upcoming climate changes Stud. Russ. Econ. Dev. 31, 396403 (2020).


    Google Scholar

  • 123.

    Reimchen, D., Dor, G., Fortier, D., Stanley, B. Walsh, R. Proc. 2009. Annual Conf. Transportation Association of Canada120 (Transportation Association of Canada. 2009).

  • 124.

    Porfiriev, B. N., Elisseev, D. O. & Streletskiy, D. A. Economic assessment of permafrost degrading effects on the Russian Arctic housing sector. Her. Russ. Acad. Sci. 91, 1725 (2021).


    Google Scholar

  • 125.

    Cheng G. A roadbed cooling method for the construction QinghaiTibet Railway. Cold. Reg. Sci. Technol. 42, 169176 (2005).


    Google Scholar

  • 126.

    Bjella, K. L. Dalton Highway 9 to11 Mile Expedient Resistivity Permafrost Investigative(Alaska Department of Transportation and Public Facilities 2014).

  • 127.

    Ma, W., Cheng, G. & Wu, Q. Construction on permafrost bases: lessons from the QinghaiTibet Railroad Cold Reg. Sci. Technol. 59, 311 (2009).


    Google Scholar

  • 128.

    Kondratiev, V. G. in ISCORD 2013 – Planning for Sustainable Cold Regions (ed. Zufelt J. E.

  • 129.

    Hu, T., Liu, J., Chang, J. & Hao, Z. A novel vapor compression refrigeration (VCRS), for permafrost chilling. Cold. Reg. Sci. Technol. 181, 103173 (2021).


    Google Scholar

  • 130.

    Chataigner Y., Gosselin Y. & Dor G. in VIIIme Colloque Interuniversitaire Franco-Qubcois sur la Thermique des Systems [French] (ed. Colloque Interuniversitaire Franco-Quebecois) 6 (Colloque Interuniversitaire Franco-Quebecois, 2007).

  • 131.

    Goering, D. J. P. Winter-time convection on open-graded embankments. Cold. Reg. Sci. Technol. 24, 5774 (1996).


    Google Scholar

  • 132.

    Malenfant-Lepage, J., Dor, G., Fortier, F. & Murchison, P. in Proc. 10th Int. Conf. Permafrost (ed. Hinkel, K. M.) 261267 (Northern Publisher, 2012).

  • 133.

    Cheng, G., Wu, Q. Engineering effect of proactive roadway cooling for the QinghaiTibet Railway. Sci. China 52, 530538 (2009).


    Google Scholar

  • 134.

    Wu, Q., Zhao, H., Zhang, Z., Chen, J. & Liu, Y. The cooling of the crushed rock structure embankment on the QinghaiXizang Railway’s underlying permafrost will have a long-term effect. Permafr. Periglac. Process. 31, 172183 (2020).


    Google Scholar

  • 135.

    Zhang, M. Y. et al. Evaluating the cooling properties of crushed-rock interlayer edifices with perforated and unperforated ventilation conduits in permafrost zones. Energy 93, 874881 (2015).


    Google Scholar

  • 136.

    Kong, X., Dor. G., Calmels. F. & Lemieux. C. Modeling of the thermal response to air convection embankment. Permafrost region. Cold Reg. Sci. Technol. 182, 103169 (2020).


    Google Scholar

  • 137.

    Niu, F. et al. Long-term thermal regimes in plateau permafrost areas of QinghaiTibet Railway embankments. Sci. China Earth Sci. 58, 16691676 (2015).


    Google Scholar

  • 138.

    Kuznetsov, G. et al. The thermosyphon works in polar regions and heat transfer in a two phase closed thermosyphon. Therm. Sci. Eng. Prog. 22, 100846 (2021).


    Google Scholar

  • 139.

    Forsstrm, A., Long, E., Zarling, J. & Knutsson, S. in Proc. 11th Int. Conf. Conf. (ed. Merrill K. S. 645655 (American Society of Civil Engineers 2002).

  • 140.

    Hayley D. W., Roggensack, W. D., Jubien, W. E. & Johnson, P. V. in Proc. 4th Int. Conf. Permafrost (ed. Embleton, C.

  • 141.

    Chen, L., Yu, W., Lu, Y. & Liu W. Numerical simulation on thermosyphon performance adopted to reduce thaw Settlement of embankment in sandy Permafrost Zone. Appl. Therm. Eng. 128, 16241633 (2018).


    Google Scholar

  • 142.

    Wang, S., Niu, F., Chen, J. & Dong Y. Permafrost research on express highway construction in China. Permafr. Periglac. Process. 31, 406416 (2020).


    Google Scholar

  • 143.

    Wagner A. M., Zarling J. P., Yarmak E. & Long E. L. in Proc. GEO2010 (ed. Canadian Geotechnical Society 17701776 (Canadian Geotechnical Society 2010,

  • 144.

    Song, Y. Jin L., Zhang J. In-situ study of cooling characteristics of closed thermosyphon embankment in QinghaiTibet Highway. Permafrost region. Cold Reg. Sci. Technol. 93, 1219 (2013).


    Google Scholar

  • 145.

    Dor, G., Ficheur A., Guimond A. Boucher M. Cold Regions Engineering 2012 – Sustainable Infrastructure Development in a Changing Cold Environment (ed. Morse, B.) 3241 (American Society of Civil Engineers 2012).

  • 146.

    Cheng, G., Zhang, J., Sheng, Y. & Chen, J. Principle of thermal insulation for permafrost safety. Cold Reg. Sci. Technol. 40, 7179 (2004).


    Google Scholar

  • 147.

    Bjella, K. in ISCORD 2013 – Planning for Sustainable Cold Regions (ed. Zufelt J. E. 565575 (American Society of Civil Engineers, 2013).

  • 148.

    Johnston, G. H. Proc. 4th Int. Conf. Permafrost (ed. Embleton, C.) 548553 (National Academies Press, 1983).

  • 149.

    Esch, D. C. in Proc. 5th Int. Conf. Permafrost (ed. Senneset, K.) 12231228 (Tapis Publishers, 1988).

  • 150.

    Richard, C., Dor, G., Lemieux, C., Bilodeau, J. P. & Haure-Touz, J. in Cold Regions Engineering 2015: Building and Maintaining Resilient Infrastructure (ed. Guthrie W. S. 181192 (American Society of Civil Engineers, ASCE), 2015.

  • 151.

    Dumais S. & Dor G. An Albedo-based model to calculate pavement surface temperatures within permafrost zones. Cold Reg. Sci. Technol. 123, 4452 (2015).


    Google Scholar

  • 152.

    Fortier, D., Sliger, M. & Rioux, K. Performance Assessment of Thermo Reflective Snow-Sun Sheds at Beaver Creek Road Experimental Site(University of Montreal (2018)

  • 153.

    Feng, W. J., Ma, W., Li, D. Q. Zhang, L. Application investigation for awning to roadway engineering on QinghaiTibet Plateau. Cold Reg. Sci. Technol. 45, 5158 (2006).


    Google Scholar

  • 154.

    Esch, D. C. in Proc. 4th Canadian Permafrost Conf. (ed. French, H. M.), 560569 (National Research Council of Canada), 1982

  • 155.

    Alfaro, M. C., Blatz, J. A. A. Lowl. Technol. Intern. 8, 4754 (2006).


    Google Scholar

  • 156.

    Grechishchev, S. E., Kazarnovsky, V. D., Pshenichnikova, Y. S. & Sheshin, Y. B. Proc. 8th Int. Permafrost Conf. (eds Phillips, M., Springman, S. M. & Arenson, L. U.) 309311 (A. A. Balkema, 2003).

  • 157.

    Rooney, J. W. & Johnson E. G. Design and Construction of Embankments in Cold Regions (ed. Johnson, E. G. 1334 (American Society of Civil Engineers 1988).

  • 158.

    De Guzman, E. M. B. Structural Stability in the Arctic Corridor: Highway Embankments. Doctoral dissertation, Univ. Manitoba (2020).

  • 159.

    Yu, Q. H. Mu. Y. H. Yuan. C., Ma. W. & Pan. X. C. Cold accumulative effect of expressway embankment and a combined cooling in permafrost areas. Cold Reg. Sci. Technol. 163, 5967 (2019).


    Google Scholar

  • 160.

    Stephani, E. and Fortier D., Shur Y., Fortier R. & Dor G. Geosystems approach to permafrost engineering applications. An example from a road stability experiment, Beaver Creek Yukon, Canada. Cold Reg. Sci. Technol. 100, 2035 (2014).


    Google Scholar

  • 161.

    Bjella, K. L. in GeoCalgary2010: Proc. 63rd Canadian Geotechnical Congress 6th Canadian Permafrost Conf. (eds Kwok, C., Moorman, B., Armstrong, R. & Henderson, J.) 970977 (Canadian Geotechnical Society 2010, 2010).

  • 162.

    N. Shiklomanov. Exploration to systematic investigation: Development of geocryology, 19th- and early 20th-century Russia. Phys. Geogr. 26, 249263 (2005).


    Google Scholar

  • 163.

    Streletskiy, D., Anisimov, O. Vasiliev A. in Snow and Ice-Related Risks, Hazards, and Disasters (eds Haeberli, W. & Whiteman, C.) 303344 (Elsevier, 2014).

  • 164.

    Yu, Q. H., Ji, Y., Zhang, Z., Wen, Z. & Feng C. Design, research and construction of high voltage transmission cables on the QinghaiTibet plate a special issue on permafrost powers lines Cold Reg. Sci. Technol. 121, 179186 (2016).


    Google Scholar

  • 165.

    Nitzbon, J. et al. Fast response of northeast Siberia’s permafrost rich in cold ice to a warming climate Nat. Commun. 11, 111 (2020).


    Google Scholar

  • 166.

    Garnello, A. et al. Projecting permafrost melting in sub-Arctic Tundra using a thermodynamic model that is calibrated to the site measurements J. Geophys. Res. Biogeosci. 126, e2020JG006218 (2021).


    Google Scholar

  • 167.

    Schneider von Deimling, T. et al. The consequences of permafrost loss for Arctic infrastructure. Cryosphere 15, 24512471 (2021).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.