Now Reading
Photoperiod-driven rhythms show multi-decadal stability for phytoplankton communities within a highly fluctuating coastal environment
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Photoperiod-driven rhythms show multi-decadal stability for phytoplankton communities within a highly fluctuating coastal environment

  • Hoegh-Guldberg, O. Bruno, J. F. The effects of climate change on marine ecosystems around the world. Science 328, 15231528 (2010).

    ADS
    CAS
    PubMed

    Google Scholar

  • Rahmstorf S. & Coumou D. The increase in extreme events in a warming planet. Proc. Natl. Acad. Sci. USA 108, 1790517909 (2011).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Toseland, A. et.The temperature effect on marine phytoplankton resource and metabolism allocation. Nat. Clim. Clim. 3, 979984 (2013).

    ADS
    CAS

    Google Scholar

  • Doney, S. C. Plankton. Nature 444, 695696 (2006).

    ADS
    CAS
    PubMed

    Google Scholar

  • Harley, C. D. G. et.The effects of climate change on coastal marine systems: Climate Change in Coastal Marine Systems Ecol. Lett. 9, 228241 (2006).

    ADS
    PubMed

    Google Scholar

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo J. M. Human domination on Earth’s ecosystems. Science 277, 494499 (1997).

    CAS

    Google Scholar

  • Zingone, A., Phlips, E. J. Harrison, P. J. Multiscale variability in twenty-two coastal phytoplankton series: A global comparison. Estuaries Coasts 33, 224229 (2010).

    CAS

    Google Scholar

  • Cloern, J. E. et.Fast-paced changes are caused by human activities and climate variability in the world’s estuarine/coastal ecosystems. Glob. Change Biol. 22, 513529 (2016).

    ADS

    Google Scholar

  • Cloern J. E. & Jassby A. D. Patterns of phytoplankton variability within estuarine and coastal ecosystems. Estuaries Coasts 33, 230241 (2010).

    CAS

    Google Scholar

  • Romagnan, J.-B. et.Comprehensive model of annual plankton succession using the whole-plankton series approach. PLoS ONE 10, e0119219 (2015).

    PubMed
    PubMed Central

    Google Scholar

  • Guadayol, . et.Responses of coastal Osmotrophic Planktonic Communities to Simulated Events of Turbulence and Nutrient Load throughout a Year J. Plankton Res. 31, 583600 (2009).

    CAS

    Google Scholar

  • Totti, C. et.The northwestern Adriatic Sea phytoplankton communities. Interdecadal variability over 30-years (1988-16) and relationships with meteoclimatic factors. J. Mar. Syst. 193, 137153 (2019).


    Google Scholar

  • Zingone, A. et.Coastal phytoplankton doesn’t rest in winter. Estuaries Coasts 33, 342361 (2010).

    CAS

    Google Scholar

  • Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P. & Somerfield, P. J. Long-term dynamics in the Western English Channel phytoplankton community. J. Plankton Res. 32, 643655 (2010).


    Google Scholar

  • Harding, L. W. et.Recent phytoplankton dynamics in Chesapeake Bay have been influenced by variable climatic conditions. Sci. Rep. 6, 116 (2016).


    Google Scholar

  • Suikkanen S., Laamanen M. & Huttunen M. Long-term changes to summer phytoplankton communities in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 71, 580592 (2007).

    ADS

    Google Scholar

  • Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L. & Kraberg, A. Long-term trends of phytoplankton composition in central and western Baltic Sea. J. Mar. Syst. 87, 145159 (2011).


    Google Scholar

  • Cloern J. E. Turbidity in Estuaries: Control of Phytoplankton Biomass and Productivity Cont. Shelf Res. 7, 13671381 (1987).

    ADS

    Google Scholar

  • Barbosa, A. B., Domingues, R. B. & Galvo H. M. Environmental forcing of phytoplankton at a Mediterranean estuary. (Guadiana Estuary. South-western Iberia). Estuaries Coasts 33, 324341 (2010).

    CAS

    Google Scholar

  • Barrera-Alba J. J., Abreu P. C. & Tenenbaum D. R. Seasonal variability and inter-annual variability of phytoplankton over a 22 year period in a tropical coastal area in the southwestern Atlantic Ocean. Cont. Shelf Res. 176, 5163 (2019).

    ADS

    Google Scholar

  • Brito, A. C. et.Changes in the composition of phytoplankton in a temperate estuarine ecosystem (1960 to 2010). Estuaries Coasts 38, 16781691 (2015).

    CAS

    Google Scholar

  • Zingone, A. et.Increasing the quality, comparability, and accessibility of phytoplankton species structure time-series data. Estuar. Coast. Shelf Sci. 162, 151160 (2015).

    ADS

    Google Scholar

  • T. J. Smayda. Phytoplankton species succession. In The Physiological Ecology and Phytoplankton493570 (Blackwell Scientific Publications 1980).


    Google Scholar

  • Kremer, C. T. & Klausmeier, C. A. Species packing in ecoevolutionary models for seasonally changing environments Ecol. Lett. 20, 11581168 (2017).

    PubMed

    Google Scholar

  • Sakavara A., Tsirtsis G., Roelke D. L. Mancy, R. and Spatharis S. Lumpy species coexistence is robustly induced by fluctuating resource environments Proc. Natl. Acad. Sci. USA 115, 738743 (2018).

    CAS
    PubMed

    Google Scholar

  • Wiltshire, K. H. et.Resilience of North Sea spring bloom dynamics of phytoplankton: An analysis of long-term Helgoland Roads data. Limnol. Oceanogr. 53, 12941302 (2008).

    ADS

    Google Scholar

  • Tsakalakis, I., Pahlow, M., Oschlies, A., Blasius, B. & Ryabov, A. B. Diel light cycle is a key factor in modeling phytoplankton diversity and biogeography. Ecol. Model. 384, 241248 (2018).


    Google Scholar

  • Platt, T., Fuentes Yaco, C. & Frank, K. T. Spring bloom and survival of larval fish. Nature 423, 398399 (2003).

    ADS
    CAS
    PubMed

    Google Scholar

  • Edwards, M. & Richardson, A. J. Climate change and the impact on marine pelagic phenology. Nature 430, 881884 (2004).

    ADS
    CAS
    PubMed

    Google Scholar

  • Vantrepotte (V.) & Melin (F. Temporal variability in 10-year global SeaWiFS time series of phytoplankton phyll a concentration. ICES J. Mar. Sci. 66, 15471556 (2009).


    Google Scholar

  • McQuatters-Gollop, A. et.From microscope to management. The critical role of plankton taxonomy in marine policy and biodiversity preservation. Mar. Mar. 83, 110 (2017).


    Google Scholar

  • Edwards K. F., Litchman E., & Klausmeier C.A. Functional traits explain structure and seasonal dynamics of phytoplankton communities in a marine environment. Ecol. Lett. 16, 5663 (2013).

    PubMed

    Google Scholar

  • Wentzky, V. C., Tittel, J., Jger, C. G., Bruggeman, J. Rinke, K. Seasonal successions of functional traits within phytoplankton communities. Their interaction with trophic states. J. Ecol. 108, 16491663 (2020).

    CAS

    Google Scholar

  • Karl, D. M. Oceanic ecosystem time-series programs: Ten lessons learned. Oceanography 23, 104125 (2010).


    Google Scholar

  • dAlcal, M. R. et.Seasonal patterns of plankton communities in a multiannual time series at a coast Mediterranean site (Gulf of Naples). This is an attempt to discern recurrences or trends. Sci. Mar. 68, 6583 (2004).


    Google Scholar

  • Mazzocchi M. G. Garca-Comas C., Garca-Comas C., Capua I. D. & Ribera dAlcal M. Stability & resilience in coastal copepod assemblages. The case of the Mediterranean long term ecological research at Station MC. Prog. Oceanogr. 97100, 135151 (2012).

    ADS

    Google Scholar

  • Thioulouse J., Simier M. & Chessel D. Simultaneous Analysis of a sequence paired ecological tables. Ecology 85, 272283 (2004).


    Google Scholar

  • Lindeman, R. H., Merenda, P. F. & Gold, R. Z. Introduction to multivariate and bivariate analysis 119 (Scott Foresman Co, 1980).

    MATH

    Google Scholar

  • Longobardi, L. Data to Knowledge: Integrating observational Data to Trace Phytoplankton Dynamics within a Changing World (Open Univ, 2021).


    Google Scholar

  • Pisano, A. et.New evidence from sea surface temperature measurements provides new evidence of mediterranean weather change and variability. Remote Sensing 12, 132 (2020).

    ADS

    Google Scholar

  • Zingone, A. et.Time series and beyond: multifaceted plankton research in a marine Mediterranean LTER site. Nat. Conserv. 34, 273310 (2019).


    Google Scholar

  • Zingone, A., Licandro P. & Sarno D. Revising paradigms & myths of phytoplankton ecosystem using biological time series. In Mediterranean Biological Time Series. CIESM Workshop Monographs 109114 (2003).

  • Cianelli, D. et.The disconnection of biological and physical drivers of phytoplankton dynamics within a coastal system. Sci. Rep. 7, 115 (2017).

    CAS

    Google Scholar

  • Zingone A., Casotti R. dAlcal M. R. Scardi M. & Marino D. St Martins’ Summer: The case of an early autumn phytoplankton flower in the Gulf of Naples. J. Plankton Res. 17, 575593 (1995).


    Google Scholar

  • Margalef R. Life forms of phytoplankton to provide survival alternatives in an unstable environmental. Oceanol. Acta 1, 493509 (1978).


    Google Scholar

  • Sommer, U. et.Beyond the plankton ecology (PEG) model: Mechanisms that drive succession. Annu. Rev. Ecol. Evol. Syst. 43, 429448 (2012).


    Google Scholar

  • Reynolds, C. S. How do you determine the species composition of phytoplankton within lakes with different trophic levels? In Phytoplankton, Trophic Gradients (eds Alvarez-Cobelas, M. et.) 1126 (Springer, 1998).


    Google Scholar

  • Zingone A., Montresor M., & Marino D. Summer phytoplankton behavior in the Gulf of Naples. Mar. Ecol. 11, 157172 (1990).

    ADS

    Google Scholar

  • Harding, L. W. et.Long-term trends in nutrients, phytoplankton and other factors in Chesapeake Bay Estuaries Coasts 39, 664681 (2016).

    CAS

    Google Scholar

  • Andersen, J. H. et.Long-term spatial and temporal trends in the eutrophication status for the Baltic Sea. Biol. Rev. 92, 135149 (2017).

    PubMed

    Google Scholar

  • Giner, C. R. et.Quantifying long term recurrence in planktonic bacteria eukaryotes. Mol. Ecol. https://doi.org/10.1111/mec.14929 (2019).

    Article
    PubMed

    Google Scholar

  • Ward, C. S. et.The seasonal switching of closely related marine bacteria is a key factor in the development of annual community patterns. ISME J. 11, 14121422 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • Gilbert, J. A. et.Defining seasonal marine microbiome community dynamics. ISME J. 6, 298308 (2012).

    CAS
    PubMed

    Google Scholar

  • Beaugrand, G. et.Synchronous shifts in the Northern Hemisphere’s marine pelagic system Philos. Trans. R. Soc. R. Soc. 370, 20130272 (2015).


    Google Scholar

  • Conversi, A. et.The Mediterranean Sea Regime Shifts at the End of 1980s, and fascinating parallelisms to other European Basins. PLoS ONE 5, e10633 (2010).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • H. Eilertsen. Sandberg. S. & Tllefsen. Photoperiodic Control of Diatom Spore Growth; A Theory to Explain the onset and spread of phytoplankton blooms. Mar. Ecol. Prog. Ser. 116, 303307 (1995).

    ADS

    Google Scholar

  • Hensen, V. Ueber die Bestimmung des Planktons oder des im Meere treibenden Materials an Pflanzen und Thieren (Kiel Publishers, 1887).


    Google Scholar

  • Andersen, D. M. & Keafer, B. A. A. Gonyaulax tamarensis. Nature 325, 616617 (1987).

    ADS

    Google Scholar

  • Kremp, A. Anderson, D.M. Factors that regulate germination of resting cysts for the spring bloom dinoflagellate Scrippsiella hangoeiFrom the northern Baltic Sea. J. Plankton Res. 22, 13111327 (2000).


    Google Scholar

  • Aubry, F. B. et.The northern Adriatic Sea Plankton Communities: Patterns and Changes in the Last 30 Years Estuar. Coast. Shelf Sci. 115, 125137 (2012).

    ADS

    Google Scholar

  • Gutirrez-Rodrguez, A. et.Dynamics of growth and grazing rates for major phytoplankton group in an oligotrophic coastal area Estuar. Coast. Shelf Sci. 95, 7787 (2011).

    ADS

    Google Scholar

  • Brannock (P. M.), Ortmann (A. C.), Moss (A. G.) & Halanych (1999). Metabarcoding shows environmental factors that can influence spatiotemporal variation in micro-eukaryotes. Mol. Ecol. 25, 35933604 (2016).

    PubMed

    Google Scholar

  • Piredda, R. et.Diversity and temporal patterns in planktonic protist assemblages from a Mediterranean Long Term Ecological Research Site. FEMS Microbiol. Ecol. 93, fiw200 (2017).

    PubMed

    Google Scholar

  • Lambert, S. et.Rhythmicity in coastal marine picoeukaryotes (bacteria, archaea), despite environmental perturbations. ISME J. 13, 388401 (2019).

    PubMed

    Google Scholar

  • Hiltz, M., Bates, S. S. & Kaczmarska, I. Effect of light: The sexual reproduction of pennate diatoms is affected by dark cycles and cell apical length Pseudo-nitzschia multiseries (Bacillariophyceae) in culture. Phycologia 39, 5966 (2000).


    Google Scholar

  • Mouget, J.-L., Gastineau, R., Davidovich, O., Gaudin, P. & Davidovich, N. A. The pennate diatom’s pennate pennate diatom has sexual reproduction triggered by light. Haslea ostrearia. FEMS Microbiol. Ecol. 69, 194201 (2009).

    CAS
    PubMed

    Google Scholar

  • Montresor, M., Vitale, L., DAlelio, D. & Ferrante, M. I. Sex in marine planktonic datoms: New insights and challenges Perspect. Phycol. 3, 6175 (2016).


    Google Scholar

  • Rost, B., Riebesell, U. & Sltemeyer D. Carbon acquisition by marine phytoplankton. Effect of photoperiod length. Limnol. Oceanogr. 51, 1220 (2006).

    ADS
    CAS

    Google Scholar

  • Edwards K. F. Community structure in phytoplankton. Seasonal dynamics from a method of sparse traits data. Ecology 97, 34413451 (2016).

    PubMed

    Google Scholar

  • Forrest, J. & Miller-Rushing, A. J. A synthetic understanding of the role phenology plays in ecology and evolution. Philos. Trans. R. Soc. R. Soc. 365, 31013112 (2010).


    Google Scholar

  • Margiotta, F. et.Do environmental quality standards reflect plankton? The case of a Mediterranean Bay that has been post-industrial. Mar. Environ. Res. 160, 104980 (2020).

    CAS
    PubMed

    Google Scholar

  • Ferrera, I. et.Assessment of microbial phyton diversity as an ecological indicator along the NW Mediterranean coast. Mar. Pollut. Bull. 160, 111691 (2020).

    CAS
    PubMed

    Google Scholar

  • Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. New phytoplankton blooms are triggered by the East Pacific’s cold phase in San Francisco Bay Proc. Natl. Acad. Sci. USA 104, 1856118565 (2007).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Scotto di Carlo, B. et. Uno studio integrato dellecosistema pelagico costiero del Golfo di Napoli. Nova Thalass 7, 99128 (1985).


    Google Scholar

  • Carrada, G. C. Fresi. E., Marino. D., Modigh. M. & DAlcal. M. R. Structural analysis for winter phytoplankton in Gulf of Naples. J. Plankton Res. 3, 291314 (1981).

    CAS

    Google Scholar

  • Marino, D., Modigh, M. & Zingone, A. General characteristics of phytoplankton communities in the Gulf of Naples and its adjacent waters. In Productivity and Marine Phytoplankton (Springer, 1984).


    Google Scholar

  • Hansen, H. P. & Grasshoff K. Automated chemical analyses. Methods Seawater Anal 49, 347395 (1983).


    Google Scholar

  • Sabia, L. et.Step-by-step method for assessing the quality of biogeochemical coast data. Mediterr. Mar. Sci. 20, 5673 (2019).


    Google Scholar

  • Mann, H.B. Trend analysis using nonparametric tests Econometrica 13, 245259 (1945).

    MathSciNet
    MATH

    Google Scholar

  • Kendall, M. G. Kendall Rank Correlation Techniques (Griffin, 1975).


    Google Scholar

  • Jassby A. D. & Cloern J. E. R Package Version 04 5, (2015).

  • Lomb, N.R. Least squares frequency analysis of unequally-spaced data. Astrophys. Space Sci. 39, 447462 (1976).

    ADS

    Google Scholar

  • Scargle, J. D. Studies on astronomical time series analyses. II-Statistical aspects of spectral analyses of unevenly spaced datasets Astrophys. J. 263, 835853 (1982).

    ADS

    Google Scholar

  • Linnell Nemec, A. F. & Nemec, J. M. A test of significance for periods derived using phase-dispersion-minimization techniques. Astron. J. 90, 23172320 (1985).

    ADS

    Google Scholar

  • Fuhrman, J. A., Cram, J. A. D. M. Needham & A. Nat. Rev. Microbiol. 13, 133146 (2015).

    CAS
    PubMed

    Google Scholar

  • Cram, J. A. et.Over ten year, the seasonal and interannual variability within the marine bacterioplankton communities throughout the water column has been remarkable. ISME J. 9, 563580 (2015).

    PubMed

    Google Scholar

  • Escoufier, Y. Le traitement des variables vectorielles. Biometrics 29, 751760 (1973).

    MathSciNet

    Google Scholar

  • Thioulouse, J. et. Multivariate Analysis with ade4 of Ecological Data (Springer, 2018).


    Google Scholar

  • Fuhrman, J. A. et.Ocean conditions can predict annual reoccurring bacterial community. Proc. Natl. Acad. Sci. USA 103, 1310413109 (2006).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • OBrien R.M. A cautionary tale about rules of thumb for variance inflation rates Qual. Quant. 41, 673690 (2007).


    Google Scholar

  • Grmping, U. Relative importance of linear regression in R: package relaimpo. J. Stat. Softw. 17, 127 (2006).


    Google Scholar

  • Bi, J. Bi, J. J. Sens. Stud. 27, 87101 (2012).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.