Technology Roadmap: Energy & GHG Reductions in Chemical Industry via Catalytic Processes(International Energy Agency, 2013,
Bligaard, T. et al. Achieving benchmarking in catalysis science: Best practices, challenges, opportunities. ACS Catal. 6, 25902602 (2016).
Scott, S. L. A matter both of life and death. ACS Catal. 8, 85978599 (2018).
Murzin, D. Engineering Catalysis (De Gruyter, 2013).
Armor, J.N. Do you really need a better catalyst? Appl. Catal. A Gen. 282, 14 (2005).
Mitchell, S., Michels, N.-L. & Perez-Ramirez, J. The science of catalyst scale-up: from powder to technical bodies: Chem. Soc. Rev. 42, 60946112 (2013).
Boren, M., Chan, V. & Musso, C. The Path to Improved Returns on Materials Commercialization (McKInsey & Co., 2012).
Schaidle, J. A. et al. in Catalysis Vol. 29 (eds Spivey, J. & Han (Y.-F.). 213281 (Royal Society of Chemistry 2017).
Dutta, A. et al. Process Design and Economics for Conversion of Lignocellulosic Biomass To Hydrocarbon Fuels: Thermochemical Pathways with In Situ or Ex Situ Upgrading Of Fast Pyrolysis Vapors.Report no. NREL/TP-5100-62455 National Renewable Energy Laboratory, 2015.
Dutta, A., Schaidle, J. A., Humbird, D., Baddour, F. G. & Sahir, A. Conceptual process design and technoeconomic assessment of ex-sit catalytic fastpyrolysis of biomass: A fixed bed reactor implementation scenario for future viability. Top. Catal. 59, 218 (2016).
Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic biomass to Hydrocarbon Fuels: 2018 Technology Status and Future Research. Report no. NREL/TP-5100-71954 National Renewable Energy Laboratory, 2018.
Dutta, A. et al. Ex Situ Catalytic Rapid Pyrolysis of Lignocellulosic biomass to Hydrocarbon fuels: 2019 State of Technology and Future Research. Report no. NREL/TP-5100-76269 National Renewable Energy Laboratory 2020
Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis Lignocellulosic biomass to Hydrocarbon Fuels: 2020 Technology State. Report no. NREL/TP-5100-80291 National Renewable Energy Laboratory (2021).
Tan, E. C. D. et al. Conceptual process design and economics to produce high-octane gasoline blendstock through indirect liquefaction (using methanol/dimethylether intermediates). Biofuel. Bioprod. Biorefin. 10, 1735 (2016).
Snowden-Swan, L. J., Spies, K. A., Lee, G. J. & Zhu, Y. Analysis of greenhouse gas emissions from catalysts for hydrotreating fast pyrolysis biooil. Biomass Bioenergy 86, 136145 (2016).
Kazi, F. K., Patel, A. D., Serrano-Ruiz, J. C., Dumesic, J. A. & Anex, R. P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem. Eng. J. 169, 329338 (2011).
Dutta, A. et al. Process Design and Economics for Conversion Of Lignocellulosic Biomass into Ethanol. Thermochemical Pathway through Indirect Gasification and Mixed Alcohol Synthesis.Report no. NREL/TP-5100-551400 National Renewable Energy Laboratory, 2011.
Tan, E. C. D. et al. Process Design and Economics for Conversion of Lignocellulosic Biomass into Hydrocarbons via Indirect Liquefaction.. Report no. NREL/TP-5100-62402 National Renewable Energy Laboratory, 2015.
Anderson, J. Determining Manufacturing Prices. Chem. Eng. Prog. 2731 (2009).
Anderson, J. Communicating the Cost of Product and Process Development. Chem. Eng. Prog. 4651 (2010).
Anderson, J. & Fennell, A. Calculate financial indicators to guide investment decisions. Chem. Eng. Prog. 3440 (2013).
Peters, M. S. & Timmerhaus, K. D. Chemical Engineers: Economics and Plant Design 5th edn (McGraw-Hill, 2003).
Ulrich, G. D. & Vasudevan, P. T. Chemical Engineering Process Design and Economics2nd edn (Process 2004).
Towler, G. & Sinnott, R. K. Principles and Practice in Chemical Engineering Design. Economics of Plant and Process Design. 2nd edn (Butterworth-Heinemann, 2013).
Green, D. W. & Perry, R. H. Perrys Chemical Engineers Handbook 8th edn (McGraw-Hill, 2008).
Garrett, D. E. Chemical Engineering Economics (Van Nostrand-Reinhold, 1989).
Vajglov, Z. et al. Synthesis and physicochemical analysis of shaped catalysts of and Yzeolites for the cyclization of citronellal. Ind. Eng. Chem. Res. 58, 1808418096 (2019).
Devyatkov, S., Kuzichkin, N. V. & Murzin, D. Y. A comprehensive understanding of catalyst shaping through extrusion. Chim. Oggi 33, 5764 (2015).
Stiles, A. B. Catalyst Manufacture (Marcel Dekker, 1983).
Bankmann, M., Brand, R., Engler, B. H. & Ohmer, J. Forming high surface area TiO2To provide catalyst support. Catal. Today 14, 225242 (1992).
P. R. Tufvesson, J. LimaRamos. M. Nordblad. M. Woodley. Guidelines and cost analysis of catalyst production in biocatalytic process. Org. Process Res. Dev. 15, 266274 (2011).
Menten, F.; Chze, B.; Patouillard, L. and Bouvart, F. An analysis of LCA greenhouse gas emissions results in advanced biofuels: The use of meta-regression analysis Renew. Sustain. Energy Rev. 26, 108134 (2013).
Greig, A. L. & Carey S. International Molybdenum Association’s (IMOA) life-cycle assessment program and perspectives on LCA harmonization. Int. J. Assess the Life Cycle. 21, 15541558 (2015).
Sick, V. et al. The need for and the path to harmonized technology economic assessment and life cycle assessment for carbon dioxide capture, and utilization. Energy Technol. https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901034 (2019).
Trippe, F. Frhling M., Schultmann F., Stahl R. & Henrich E. Techno-economic analysis and fast pyrolysis as an intermediate step in biomass-to-liquid-fuel production. Waste Biomass Valoriz. 1, 415430 (2010).
Hu, W. Dang, Q. Rover, M. Brown, R. C. and Wright, M.M. Comparative technoeconomic analysis of advanced biofuels and biochemicals via fast pyrolysis. Biofuels 7, 5767 (2015).
Meyer, P. A. et al. Field-to fuel performance testing of lignocellulosic feedstocks to fast pyrolysis/upgrading: Techno-economic analysis and greenhouse gas cycle analysis. Energy Fuels 30, 94279439 (2016).
Talmadge, M. et al. Techno-economic analysis of co-processing fast-pyrolysis liquid with vacuum gasolineoil in FCC units to produce second-generation biofuels. Fuel 293, 119960 (2021).
CatCost v.1.1.0; National Renewable Energy Laboratory 2021 https://catcost.chemcatbio.org
Qi, W., Sathre, R., Morrow, W. R. & Shehabi, A. Trends in Unit Price Scaling for Chemical Products. Report no. LBNL-189844 (Lawrence Berkeley National Laboratory, 2015).
Baddour F. G.; Snowden-Swan L.; Super, J. D. and Van Allsburg K. M. Precommercial heterogeneous catalyst prices: A simple step-based method Org. Process Res. Dev. 22, 15991605 (2018).
World Catalysts (Freedonia Group, 2014).
Guthrie, K. M. Techniques and Data for Preliminary Capital Cost Estimation. Chem. Eng. (New York) 114142 (1969).
Guthrie, K. M. Process Plant Evaluation, Control, and Estimation (Craftsman, 1974).
Cran, J. Cran, J. Chem. Eng. (New York) 6579 (1981).
Desai, M. B. Preliminary cost estimation for process plants. Chem. Eng. (New York) 6570 (1981).
Brown, T. R. Estimating Product Costs. Chem. Eng. (New York) 8689 (2000).
Ward, T. J. Economic Evaluation. In Kirk-Othmer Encyclopedia of Chemical Technology Online (Wiley, 2001). https://onlinelibrary.wiley.com/doi/book/10.1002/0471238961
Seider, W. D. et al. Synthesis of Product and Process Design Principles, Analyse and Evaluation 4th edn (Wiley, 2016).
Super, J.D. The precious metal loop costs from an operating company perspective. Top. Catal. 53, 11381141 (2010).
Feng, Y. & Rangaiah, G. P. Evaluating Capital Cost Estimation Programs. Chem. Eng. (New York) 2229 (2011).
Griffin, M. B. et al. By rethinking catalyst selection, reactor configuration, we can move towards cost-competitive biomass fuels using catalytic fastpyrolysis. Energy Environment. Sci. 11, 29042918 (2018).
Ruddy, D. A. et al. Recent advances in heterogeneous pyrolysis catalysts for biooil upgrading via ex-sit catalytic fastpyrolysis: The study of model compounds is a catalyst development process. Green Chem. 16, 454490 (2014).
Liu, C., Wang, H., Karim, A. M., Sun, J. & Wang, Y. Catalytic fastpyrolysis for lignocellulosic biomass. Chem. Soc. Rev. 43, 75947623 (2014).
Iisa, K., French, R. J., Orton, K. A., Dutta, A. & Schaidle, J. A. Ex situ catalytic fast Pyrolysis and Hydrotreating are used to produce low-oxygen biooil. Fuel 207, 413422 (2017).
Zacher, A. H. et al. Technological advancements in hydroprocessing bio-oils Biomass Bioenergy 125, 151168 (2019).
Iida, T. et al. The encapsulation of molybdenum-carbid nanoclusters within zeolite micropores allows for synergistic bifunctional catalysis to anisole hydrodeoxygenation. ACS Catal. 7, 81478151 (2017).
Chen, C.-J. Chen, C.-J.2CO modification of C2H2O, and OH2: The effects of oxygen content on selectivity and rates of m-cresol hydradeoxygenation ACS Catal. 7, 11131122 (2017).
Pgm Market Report(Johnson Matthey PLC 2019).
Vaughan D. E. W. Fluid Catalytic Cracking – Science and Technology (eds Magee, J. S. & Mitchell, M. M.) 83104 (Elsevier, 1993).
Schmidt, M. Sankey diagram in energy management and material flow management. J. Ind. Ecol. 12, 8294 (2008).
Bare, J. C.; Norris G. A.; Pennington D. W.; McKone T. TRACI: The tool for reducing and assessing chemical and other environmental effects. J. Ind. Ecol. 6, 4978 (2003).
Bare, J. TRACI 2.0 is the tool for reducing and assessing chemical and other environmental effects 2.0. Clean Technol. Environ. Policy 13, 687696 (2011).
TRACI v.2.1 (Environmental Protection Agency, 2012); https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci
Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J. Apul, D. Environmental impact of photovoltaic solar cell made with single walled carbon-nanotubes. Environ. Sci. Technol. 51, 47224732 (2017).
Ambrose, H. & Kendall, A. Understanding the future lithium: Part 2: temporally and spatially resolved lifecycle assessment modeling. J. Ind. Ecol. 24, 90100 (2019).
Ryberg, M., Vieira, M. D. M., Zgola, M., Bare, J. & Rosenbaum R. K. Updated US-Canada normalization factors for TRACI 2.1. Clean Technol. Environ. Policy 16, 329339 (2013).
T. L. Saaty. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 48, 926 (1990).
M. Schreier & J. R. Regalbuto. A fundamental study on Pt tetraammine impregnation of silica 1. The electrostatic nature and adsorption of platinum. J. Catal. 225, 190202 (2004).
Miller, J. T., Schreier, M., Kropf, A. J. Regalbuto, J. R. & Miller, J. T. Schreier M., Kropf A. J. The effects of loading and calcination temperatures on particle size (reduced). J. Catal. 225, 203212 (2004).
Aspen Plus (Aspen Technology, Inc., 2017).
Lang, H. J. Cost Relationships in Preliminary cost Estimation. Chem. Eng. (New York) 117121 (1947).
Lang, H.J. Simplified Approach to Preliminary Estimates. Chem. Eng. (New York) 112113 (1948).
SimaPro v.8.5.2.0 – Product Ecology Consultants, 2016,
Average annual gasoline expenses per capita for each state ranged between $400 and $1,400 (U.S. Energy Information Administration, 2021); https://www.eia.gov/todayinenergy/detail.php?id=40893
Paasikallio, V. et al. A four-day catalytic fastpyrolysis production run was conducted to determine product quality and deactivate the catalyst. Green Chem. 16, 35493559 (2014).