Now Reading
Alternative splicing for seasonal plasticity and adaptation to environmental changes
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Alternative splicing for seasonal plasticity and adaptation to environmental changes

  • 1.

    West-Eberhard, M. J. Developmental plasticity and evolution. (Oxford University Press. 2003).

  • 2.

    G. de Jong. Evolution in phenotypic Plasticity: Patterns of plasticity and the Emergence of Ecotypes. N. Phytologist 166, 101118 (2005).


    Google Scholar

  • 3.

    Ezard, T. H. G., Prizak, R. & Hoyle, R. B. The fitness cost of adaptation via phenotypic and maternal plasticity. Funct. Ecol. 28, 693701 (2014).


    Google Scholar

  • 4.

    Williams, C. M. et al. An introduction to the symposium on Understanding the evolutionary impacts of seasonality. Integr. Comp. Biol. 57, 921933 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • 5.

    Murren, C. J. et al. Limitations on the evolution of phenotypic phenotypicplasticity: costs and limits of phenotypes and plasticity Heredity 115, 293301 (2015).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 6.

    Sommer, R. J. Phenotypic Plasticity: From theory and genetics to current challenges and future opportunities. Genetics 215, 113 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • 7.

    Beldade, P., Mateus, A. R. A. Keller, R.A. Evolution and molecular mechanisms for adaptive developmental plasticity. Mol. Ecol. 20, 13471363 (2011).

    PubMed

    Google Scholar

  • 8.

    E. Lafuente & P. Beldade. Genomics and developmental plasticity in animal embryos. Front. Genet. 10, (2019).

  • 9.

    Marden J. H. Quantitative & evolutionary biology of alternative transcription: how changing the mix between alternative transcripts affects both phenotypic plasticity, and reaction norms. Heredity 100, 111120 (2008).

    CAS
    PubMed

    Google Scholar

  • 10.

    Baralle, F. E. & Giudice, J. Alternative splicing is a regulator of tissue identity and development. Nat. Rev. Mol. Cell Biol. 18, 437451 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 11.

    Bush, S. J., Chen, L., Tovar-Corona, J. M. & Urrutia, A. O. Alternative splicing and evolution of phenotypic novelty. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20150474 (2017).


    Google Scholar

  • 12.

    Marden, J. H. & Cobb J. R. Territorial success and mating success for dragonflies that differ in muscle power output and presence gregarine gut parasites. Anim. Behav. 68, 857865 (2004).


    Google Scholar

  • 13.

    Kijimoto, T., Moczek, A. P. & Andrews, J. Diversification of doublesex functions underlies morph- and sex-specific development beetlehorns. Proc. Natl Acad. Sci. USA 109, 2052620531 (2012).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 14.

    Bear, A.; Prudic, K. L. & Monteiro A. The latent effect of steroid hormone signaling during the development of the butterfly’s adult male sexual behavior is known as “steroid hormone signaling”. Bicyclus anynana. PLoS ONE 12, e0174403 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • 15.

    Martin Anduaga, A. et al. Thermosensitive alternative to splicing senses, and mediates temperature adaption in Drosophila. eLife 8, e44642 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • 16.

    Deshmukh R., Lakhe D. & Kunte K. Tissue-specific development regulation and isoform use underlie doublesex’s role in sex differentiation. Papilio swallowtails. R. Soc. Open Sci. 7, 200792 (2020).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 17.

    Grantham, M. E. & Brisson, J. A. A large amount of differential splicing is responsible for phenotypically plastic Aphid morphs. Mol. Biol. Evol. 35, 19341946 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 18.

    Price, J. et al. Alternative splicing in the bumblebee is associated with phenotypic flexibility Bombus terrestris. Mol. Ecol. 27, 10361043 (2018).

    CAS
    PubMed

    Google Scholar

  • 19.

    Lees, J. G., Ranea, J. A. C. A. Orengo, C. A. Identification and characterisation of key alternative splicing events Drosophila development. BMC Genomics 16, 608 (2015).

    PubMed
    PubMed Central

    Google Scholar

  • 20.

    Jaki, A. M. and Schltterer C. The effect of temperature and genotype in patterns of alternative splicing. Genetics 204, 315325 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • 21.

    Healy, T. M. & Schulte P. M. Patterns for alternative splicing as a response to cold acclimation of fish. J. Exp. Biol. 222, jeb193516 (2019).

  • 22.

    S. Signor & S. Nuzhdin. Acute alcohol exposure is mediated by dynamic changes in gene expression and alternative splicing. Drosophila melanogaster. Heredity 121, 342360 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 23.

    Lang, A. S.; Austin, S. H.; Harris, R. M. and Calisi, R. M. & MacManes M. D. Stress-mediated convergence in splicing landscapes among male and female rock doves. BMC Genomics 21, 251 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • 24.

    Suresh, S., Crease, T. J., Cristescu, M. E. & Chain, F. J. J. There are many options for splicing. Daphnia pulexLineages in response to acute exposure to copper BMC Genomics 21, 433 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 25.

    Thorstensen M. J., Baerwald M. R., & Jeffries K. M. RNA sequencing describes the population structure and plasticity-selection dynamics of a non-model fish. BMC Genomics 22, 273 (2021).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 26.

    Singh, A. A. Singh & Agrawal A. F. Sexual Dimorphism in Gene Expression: Coincidence and Population Genomics of Two Forms of Differential Expression in Drosophila melanogaster. bioRxiv (2021) https://doi.org/10.1101/2021.02.08.429268.

  • 27.

    Rogers, T. F.; Palmer, D. H. & Wright A. E. The evolution of alternative splicing is driven by sex-specific selection in birds. Mol. Biol. Evolution 38, 519530 (2021).

    CAS

    Google Scholar

  • 28.

    Fox, R. J.; Donelson J. M.; Schunter C., Ravasi T. & Gaitn Espiia J. D. Beyond purchasing time: The role of plasticity and phenotypic adaptations to rapid environmental changes. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180174 (2019).


    Google Scholar

  • 29.

    Kelly, M. Climate change adaptation through genetic accommodation and assimilation phenotypes. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180176 (2019).


    Google Scholar

  • 30.

    Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat C. W. Strong phenotypic flexibility limits evolutionary responses to climate change. Nat. Commun. 9, 111 (2018).

    CAS

    Google Scholar

  • 31.

    Wang, Y. et al. Mechanism of alternative splicing (Review) Biomed. Rep. 3, 152158 (2015).

    CAS
    PubMed

    Google Scholar

  • 32.

    Ule, J. & Blencowe, B. J. Alternative splicing regulatory systems: functions, mechanisms, evolution. Mol. Cell 76, 329345 (2019).

    CAS
    PubMed

    Google Scholar

  • 33.

    McManus, C. J., Coolon, J. D., Eipper-Mains, J., Wittkopp, P. J. & Graveley B.R. Evolution of splicing regulatory network in Drosophila. Genome Res. 24, 786796 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 34.

    Gao, Q. Sun, W. Ballegeer M., Ballegeer C., Libert C. & Chen W. The predominant contribution of cis regulatory divergence to the evolution of mouse alternative siplicing. Mol. Syst. Biol. 11, 816 (2015).

    PubMed
    PubMed Central

    Google Scholar

  • 35.

    Barbosa-Morais, N. L. et al. The evolutionary landscape for alternative splicing among vertebrate species Science 338, 15871593 (2012).

    ADS
    CAS
    PubMed

    Google Scholar

  • 36.

    Wang, X. et al. Cis-regulated alternative silicing divergence: its potential contribution to environmental reactions Arabidopsis. Plant J. 97, 555570 (2019).

    CAS
    PubMed

    Google Scholar

  • 37.

    Huang, Y., Lack, J. B., Hoppel G. T. & Pool J. E. Parallel gene regulatory evolution in cold-adapted fly population. bioRxiv (2021) https://doi.org/10.1101/795716.

  • 38.

    Lewis, J. J. Van Belleghem S. M. Papa R., Danko C. G. & Reed R. D. Numerous functionally connected loci encourage adaptive diversification along a neotropical mix zone. Sci. Adv. 6, eabb8617 (2020).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 39.

    Lewis, J. J. R. D. Reed & Lewis, J. J. Genome-wide regulatory adaption shapes population-level genomic landscapes at Heliconius. Mol. Biol. Evol. 36, 159173 (2019).

    CAS
    PubMed

    Google Scholar

  • 40.

    Martin, S. H. et al. Natural selection and genetic diversity in the butterfly Heliconius melpomene. Genetics 203, 525541 (2016).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 41.

    Brakefield, P. M., Beldade, P. & Zwaan, B. J. The African Butterfly Bicyclus anynana: A model for evolutionary genetics, and evolutionary developmental biology. Cold Spring Harb. Protoc. 2009, pdb.emo122 (2009).

    PubMed

    Google Scholar

  • 42.

    Mateus, A. R. A. et al. Adaptive developmental Plasticity: The ability to respond to external cues and internal signals separately to create phenotypic flexibility. BMC Biol. 12, 97 (2014).

    PubMed
    PubMed Central

    Google Scholar

  • 43.

    Oostra, V. et al. Ecdysteroid hormones link the seasonal insect’s juvenile environment to other adult life histories. Am. Naturalist 184, E79E92 (2014).


    Google Scholar

  • 44.

    van Bergen, E. et al. Conserved patterns in integrated developmental plasticity among a group of polyphenic, tropical butterflies. BMC Evolut. Biol. 17, 59 (2017).


    Google Scholar

  • 45.

    Singh, P. et al. Complex multi-trait responses in a seasonal butterfly to multivariate environmental cues. Evol. Ecol. (2020) https://doi.org/10.1007/s10682-020-10062-0.

  • 46.

    Prudic K. L., Jeon C., Cao H. & Monteiro A. Developmental plasticity drives mutual sexual ornamentation in butterfly species’ sexual roles. Science 331, 7375 (2011).

    ADS
    CAS
    PubMed

    Google Scholar

  • 47.

    Chen, L., Bush, S. J., Tovar-Corona, J. M., Castillo-Morales, A. & Urrutia A. O. Correcting differential transcript coverage reveals a strong correlation between alternative splicing & organism complexity. Mol. Biol. Evol. 31, 14021413 (2014).

    PubMed
    PubMed Central

    Google Scholar

  • 48.

    Hamid F. M. & Makeyev E.V. Emerging functions associated with nonsense-mediated decomposition. Biochem. Soc. Trans. 42, 11681173 (2014).

    CAS
    PubMed

    Google Scholar

  • 49.

    Tabrez, S. S., Sharma, R. D., Jain, V., Siddiqui, A. A. & Mukhopadhyay, A. Differential alternative splicing combined with nonsense-mediated decay mRNA of mRNA assures dietary restriction-induced longevity. Nat. Commun. 8, 306 (2017).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 50.

    Uller T., Moczek A. P. Watson R. A., Brakefield P. M., & Laland K.N. Developmental biases and Evolution: A regulatory network perspective. Genetics 209, 949966 (2018).

    PubMed
    PubMed Central

    Google Scholar

  • 51.

    Nijhout H. F. To plasticity, and back again eLife 4, e06995 (2015).

    PubMed Central

    Google Scholar

  • 52.

    Helanter, H. & Uller T. Neutral and adaptive explanations of an association between caste-biased gene transcription and rate of sequence development. Front. Genet. 5, 297 (2014).

  • 53.

    Pespeni M. H.; Ladner J. T.; & Moczek A. P. Selection signals in conditionally expressed gene in the diversification three horned Beetle species J. Evolut. Biol. 30, 16441657 (2017).

    CAS

    Google Scholar

  • 54.

    Plass M. & Eyras E. Differentiated evolution rates in alternative exons. The implications for splicing regulation. BMC Evol. Biol. 6, 50 (2006).

    PubMed
    PubMed Central

    Google Scholar

  • 55.

    Chen, F.-C., Pan, C.-L. & Lin, H.-Y. Independent effects of alternative Splicing and structural constraint in the evolution of mammalian Coding Exons. Mol. Biol. Evolution 29, 187193 (2012).

    CAS

    Google Scholar

  • 56.

    C. Pea, S. Nylin, & N. Wahlberg. The radiation of Satyrini butterflies. (Nymphalidae, Satyrinae). A challenge for phylogenetic techniques. Zool. J. Linn. Soc. 161, 6487 (2011).


    Google Scholar

  • 57.

    Bhardwaj, S. et al. Origin of phenotypic and morphological plasticity in satyrid butterflies eyespots. eLife 9, e49544 (2020).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 58.

    Lewis, B. P. Green and S. E. Brenner provide evidence for the widespread use of alternative splicing in mRNA decay. PNAS 100, 189192 (2003).

    ADS
    CAS
    PubMed

    Google Scholar

  • 59.

    Akerman, M. & Mandel-Gutfreund, Y. Alternative splicing regulation at tandem 3-splice sites. Nucleic Acids Res. 34, 2331 (2006).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 60.

    Moran, N. A. Evolutionary maintenance of alternative phenotypes. Am. Naturalist 139, 971989 (1992).


    Google Scholar

  • 61.

    Nijhout H. F. Development of adaptive polyphenisms. Evolution Dev. 5, 918 (2003).


    Google Scholar

  • 62.

    Mank, J. E. Phenotypic dimorphism: The transcriptional architecture. Nat. Ecol. Evolution 1, 17 (2017).


    Google Scholar

  • 63.

    Scheiner S. M., Barfield M., & Holt R. D. Genetics and phenotypic flexibility. XVII. Climate change response. Evolut. Appl. 13, 388399 (2020).


    Google Scholar

  • 64.

    Osada N., Miyagi R., & Takahashi A. Cis-and trans-regulatory effect on gene expression in a naturally occurring population Drosophila melanogaster. Genetics 206, 21392148 (2017).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 65.

    Cooper, R. D. & Shaffer H. B. Allele-specific gene regulation and gene expression help explain transgressive temperature tolerance in non-native hybrids (Endangered California Tiger Salamander)Ambystoma californiense). Mol. Ecol. 30, 9871004 (2021).

    CAS
    PubMed

    Google Scholar

  • 66.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 1521 (2013).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 67.

    Baruzzo, G. et al. Simulation-based comprehensive benchmarking for RNA-seq alignmenters Nat. Methods 14, 135139 (2017).

    CAS
    PubMed

    Google Scholar

  • 68.

    Schuierer, S. et al. A comprehensive evaluation of RNA-seq protocol for low-quantity and degraded samples. BMC Genomics 18, 442 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • 69.

    Broad Institute. Picard toolkit. (2019).

  • 70.

    Liao, Y.; Smyth, G. K. & Shi W. featureCounts is an efficient general-purpose program for assigning sequences to genomic features. Bioinformatics 30, 923930 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 71.

    Liao, Y.; Smyth, G. K. & Shi. W. The R package Rsubread makes it easier, faster and more cost-effective to align and quantify RNA sequencing reads. Nucleic Acids Res 47, e47e47 (2019).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 72.

    Chen, Y.; Lun, A. T. L. & Smyth. From reads and genes to pathways: differential expression analysis using Rsubread & the edgeR quasilikelihood pipeline. F1000Res 5, 1438 (2016).

    PubMed
    PubMed Central

    Google Scholar

  • 73.

    R Core Team. R: A language and environment that allows for statistical computing. (R Foundation for Statistical Computing 2019).

  • 74.

    Shen, L. GeneOverlap: Check and visualize gene overlaps. (2020).

  • 75.

    Gu, Z.Eils, R. and Schlesner M. Complex Heatmaps reveal patterns & correlations in multidimensional genomic information. Bioinformatics 32, 28472849 (2016).

    CAS

    Google Scholar

  • 76.

    Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally, and phylogenetically annotated resource for orthology based on 5090 organisms & 2502 viruses. Nucleic Acids Res 47, D309D314 (2019).

    CAS
    PubMed

    Google Scholar

  • 77.

    Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis of Gene Ontology. (2016).

  • 78.

    Larsson, J. et al. eulerr: Area-Proportional Euler, Venn Diagrams with Ellipses and Venn Diagrams with Euler. (2021).

  • 79.

    Supek F., Bonjak M., kunca N. & muc T. REVIGO summarizes & visualizes long lists gene ontology terms. PLoS ONE 6, e21800 (2011).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 80.

    Gu, Z. Gu, Z. & Hbschmann D. simplifyEnrichment is an R/Bioconductor package that allows for clustering and visualizing functional enrichment results. 2020.10.27.312116 (2020) https://doi.org/10.1101/2020.10.27.312116.

  • 81.

    Gu, Z. simplifyEnrichment: Simplify Functional Enrichment Results. (Bioconductor version, Release (3.13), 202). https://doi.org/10.18129/B9.bioc.simplifyEnrichment.

  • 82.

    Wahlberg N., Wahlberg M. A. & Zwaan B. J. Mitochondrial DNA signature to range-wide populations Bicyclus anynanaIt suggests a rapid expansion of the Refugia. PLoS ONE 6, e21385 (2011).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • 83.

    de Jong M. A., Collins S., Beldade P., Brakefield P. M. & Zwaan B. J. Footprints for selection in wild populations Bicyclus anynanaAlong with a latitudinal line. Mol. Ecol. 22, 341353 (2013).

    PubMed

    Google Scholar

  • 84.

    Martin, M. Cutadapt Removes adapter sequences in high-throughput sequencing reads EMBnet. J. 17, 1012 (2011).


    Google Scholar

  • 85.

    Joshi, N. & Fass, J. Sickle: A sliding-window adaptive, quality-based trimming device for FastQ files.

  • 86.

    Li, H. Aligning sequence readings, clone Sequences, and Assembly Contigs with BWA–MEM. arXiv:1303.3997 [q-bio] (2013).

  • 87.

    Korneliussen, T. S., Albrechtsen, A. R. ANGSD: Analysis of next-generation sequencing data. BMC Bioinforma. 15, 356 (2014).


    Google Scholar

  • 88.

    Nowell, R. W. et al. A draft genome with high-coverage for the mycalesine butterflies Bicyclus anynana. GigaScience 6, (2017).

  • 89.

    Xu, L. et al. OrthoVenn2: A web server for whole-genome analysis and annotation of orthologous groups across multiple species. Nucleic Acids Res. 47, W52W58 (2019).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 90.

    Ranwez, V. Harispe S., Delsuc F. & Douzery E. J. P.: Multiple alignment of coding sequences accounting for frameshifts & stop codons. PLoS ONE 6, e22594 (2011).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 91.

    Lucaci A. G. Wisotsky S. R. Shank S. D. Shank S. D. Weaver S. & Kosakovsky Pond S. L. Additional base hits: Widespread empirical support for instantaneous multiple nucleotide modifications PLoS One 16, e0248337 (2021).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 92.

    Buerkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 80, 128 (2017).


    Google Scholar

  • 93.

    Buerkner P.-C. Advanced Bayesian multilevel modelling with the R Package brms. R. J. 10, 395411 (2018).


    Google Scholar

  • 94.

    Kassambara, A. rstatix – Pipe-Friendly Framework for Basic Statistical Tests. (2021).

  • 95.

    Shen, S. et al. rMATS: Robust, flexible detection of differential alternative splicing using replicate RNA-Seq datasets. Proc. Natl Acad. Sci. USA 111, E5593E5601 (2014).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 96.

    Alamancos G. P. and Pags A., Trincado J. L., Bellora N. & Eyras E. Leveraging transcript quantification to fast compute alternative splicing profiles RNA 21, 15211531 (2015).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 97.

    Wang, Q. Rio, D. C. JUM is a method that allows for an exhaustive and non-annotated analysis to identify alternative pre-mRNA splicing pattern. Proc. Natl Acad. Sci. USA115, E8181E8190 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • 98.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS

    Google Scholar

  • 99.

    Kassambara, A. Publication-ready plots based on ggpubr and ggplot2. (2020).

  • 100.

    Bivand, R. & Rundel, C. rgeos – Interface To Geometry Engine – Open Source GEOS. (2021).

  • 101.

    South, A. afrilearndata – Small Africa Map Datasets For Learning. (2021).

  • 102.

    Inkscape Project. Inkscape. (2021).

  • 103.

    Steward, R. A., Oostra, V. & Wheat, C. W. B_anynana_differentialSplicing Github. zenodo.org https://zenodo.org/badge/latestdoi/255903232 (2021).

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.