Now Reading
Arctic mercury cycling | Nature Reviews Earth & Environment
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Arctic mercury cycling | Nature Reviews Earth & Environment

  • Arctic Monitoring and Assessment Programme. AMAP assessment 2011: mercury in the Arctic (AMAP, 2011).

  • Chen, L. et al. A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophys. Res. Lett. 42, 60766083 (2015).


    Google Scholar

  • Dietz, R. et al. Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci. Total Environ. 696, 133792 (2019).


    Google Scholar

  • UN Environment Programme. Global mercury assessment 2018 (UNEP, 2019).

  • Basu, N. et al. A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ. Health Perspect. 126, 106001 (2018).


    Google Scholar

  • Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Glob. Biogeochem. Cycles 30, 560575 (2016).


    Google Scholar

  • Sonke, J. E. et al. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. Proc. Natl Acad. Sci. USA 115, E11586 (2018).


    Google Scholar

  • Qureshi, A., ODriscoll, N. J., MacLeod, M., Neuhold, Y.-M. & Hungerbhler, K. Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways. Environ. Sci. Technol. 44, 644649 (2010).


    Google Scholar

  • ODriscoll, N. J. et al. Dissolved gaseous mercury production at a marine aquaculture site in the mercury-contaminated Marano and Grado Lagoon, Italy. Bull. Environ. Contam. Toxicol. 103, 218224 (2019).


    Google Scholar

  • Mason, R. P., Reinfelder, J. R. & Morel, F. M. M. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 80, 915921 (1995).


    Google Scholar

  • Arctic Monitoring and Assessment Programme. 2021 AMAP mercury assessment: summary for policy-makers (AMAP, 2021).

  • Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Chang. 10, 762770 (2020).


    Google Scholar

  • Kumar, A. & Wu, S. Mercury pollution in the Arctic from wildfires: source attribution for the 2000s. Environ. Sci. Technol. 53, 1126911275 (2019).


    Google Scholar

  • St. Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic. Environ. Sci. Technol. 52, 1409914109 (2018).


    Google Scholar

  • Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020).


    Google Scholar

  • St. Pierre, K. A. et al. Drivers of mercury cycling in the rapidly changing watershed of the High Arctics largest lake by volume (Lake Hazen, Nunavut, Canada). Environ. Sci. Technol. 53, 11751185 (2019).


    Google Scholar

  • Sndergaard, J. et al. Mercury exports from a High-Arctic river basin in Northeast Greenland (74N) largely controlled by glacial lake outburst floods. Sci. Total Environ. 514, 8391 (2015).


    Google Scholar

  • DiMento, B. P., Mason, R. P., Brooks, S. & Moore, C. The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep Sea Res. Part I 144, 2838 (2019).


    Google Scholar

  • Petrova, M. V. et al. Mercury species export from the Arctic to the Atlantic Ocean. Mar. Chem. 225, 103855 (2020).


    Google Scholar

  • Wang, K. et al. Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci. Rep. 8, 14465 (2018).


    Google Scholar

  • Agather, A. M., Bowman, K. L., Lamborg, C. H. & Hammerschmidt, C. R. Distribution of mercury species in the Western Arctic Ocean (US GEOTRACES GN01). Mar. Chem. 216, 103686 (2019).


    Google Scholar

  • Schartup, A. T., Soerensen, A. L. & Heimbrger-Boavida, L.-E. Influence of the arctic sea-ice regime shift on sea-ice methylated mercury trends. Environ. Sci. Technol. Lett. 7, 708713 (2020).


    Google Scholar

  • Kim, J. et al. Mass budget of methylmercury in the East Siberian Sea: the importance of sediment sources. Environ. Sci. Technol. 54, 99499957 (2020).


    Google Scholar

  • Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrialatmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 40514064 (2019).


    Google Scholar

  • Blum, J. D., Sherman, L. S. & Johnson, M. W. Mercury isotopes in earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42, 249269 (2014).


    Google Scholar

  • trok, M., Baya, P. A. & Hintelmann, H. The mercury isotope composition of Arctic coastal seawater. C. R. Geosci. 347, 368376 (2015).


    Google Scholar

  • Zdanowicz, C. M. et al. Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores. Glob. Biogeochem. Cycles 30, 13241347 (2016).


    Google Scholar

  • Obrist, D. et al. A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47, 116140 (2018).


    Google Scholar

  • Dibble, T. S., Tetu, H. L., Jiao, Y., Thackray, C. P. & Jacob, D. J. Modeling the OH-initiated oxidation of mercury in the global atmosphere without violating physical laws. J. Phys. Chem. A 124, 444453 (2020).


    Google Scholar

  • Saiz-Lopez, A. et al. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. Proc. Natl Acad. Sci. USA 117, 30949 (2020).


    Google Scholar

  • Zhang, Y. et al. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc. Natl Acad. Sci. USA 113, 526531 (2016).


    Google Scholar

  • Angot, H. et al. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models. Atmos. Chem. Phys. 16, 1073510763 (2016).


    Google Scholar

  • Fisher, J. A. et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat. Geosci. 5, 499504 (2012).


    Google Scholar

  • Fisher, J. A. et al. Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years. Glob. Biogeochem. Cycles 27, 12261235 (2013).


    Google Scholar

  • Tesn Onrubia, J. A. et al. Mercury export flux in the Arctic Ocean estimated from 234Th/238U disequilibria. ACS Earth Space Chem. 4, 795801 (2020).


    Google Scholar

  • Heimbrger, L.-E. et al. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Sci. Rep. 5, 10318 (2015).


    Google Scholar

  • Cossa, D. et al. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences 15, 23092323 (2018).


    Google Scholar

  • Charette, M. A. et al. The transpolar drift as a source of riverine and shelf-derived trace elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 125, e2019JC015920 (2020).


    Google Scholar

  • Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 14631471 (2018).


    Google Scholar

  • Lim, A. G. et al. A revised northern soil Hg pool, based on western Siberia permafrost peat Hg and carbon observations. Biogeosciences 17, 30833097 (2020).


    Google Scholar

  • Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201204 (2017).


    Google Scholar

  • Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269284 (2021).


    Google Scholar

  • Arctic Monitoring and Assessment Programme & UN Environment Programme. Technical background report to the global mercury assessment 2018 (AMAP/UN Environment, 2019).

  • Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S. & Heimbrger-Boavida, L. E. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 1146611477 (2018).


    Google Scholar

  • De Simone, F. et al. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmos. Chem. Phys. 17, 18811899 (2017).


    Google Scholar

  • Kumar, A., Wu, S., Huang, Y., Liao, H. & Kaplan, J. O. Mercury from wildfires: global emission inventories and sensitivity to 20002050 global change. Atmos. Environ. 173, 615 (2018).


    Google Scholar

  • Friedli, H. R., Arellano, A. F., Cinnirella, S. & Pirrone, N. Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ. Sci. Technol. 43, 35073513 (2009).


    Google Scholar

  • Bozem, H. et al. Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements. Atmos. Chem. Phys. 19, 1504915071 (2019).


    Google Scholar

  • Law, K. S. et al. Arctic air pollution: new insights from POLARCAT-IPY. Bull. Am. Meteorol. Soc. 95, 18731895 (2014).


    Google Scholar

  • Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 88898973 (2015).


    Google Scholar

  • Weiss-Penzias, P. et al. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Atmos. Environ. 41, 43664379 (2007).


    Google Scholar

  • Durnford, D., Dastoor, A., Figuera-Nieto, D. & Ryjkov, A. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 10, 60636086 (2010).


    Google Scholar

  • Pithan, F. et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 11, 805812 (2018).


    Google Scholar

  • Lee, M.-Y., Hong, C.-C. & Hsu, H.-H. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 20132014 boreal winter. Geophys. Res. Lett. 42, 16121618 (2015).


    Google Scholar

  • Dastoor, A. et al. Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling. Sci. Total Environ. 509510, 1627 (2015).


    Google Scholar

  • Steenhuisen, F. & Wilson, S. J. Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmos. Environ. 211, 138150 (2019).


    Google Scholar

  • Friedli, H. R. et al. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos. Environ. 37, 253267 (2003).


    Google Scholar

  • Webster, J. P., Kane, T. J., Obrist, D., Ryan, J. N. & Aiken, G. R. Estimating mercury emissions resulting from wildfire in forests of the Western United States. Sci. Total Environ. 568, 578586 (2016).


    Google Scholar

  • McLagan, D. S., Stupple, G. W., Darlington, A., Hayden, K. & Steffen, A. Where there is smoke there is mercury: assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates. Atmos. Chem. Phys. 21, 56355653 (2021).


    Google Scholar

  • Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 3141 (2016).


    Google Scholar

  • Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317328 (2013).


    Google Scholar

  • Lizundia-Loiola, J., Otn, G., Ramo, R. & Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 236, 111493 (2020).


    Google Scholar

  • Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959-1999. Can. J. For. Res. 31, 512525 (2001).


    Google Scholar

  • Arctic Monitoring and Assessment Programme. Impacts of short-lived climate forcers on Arctic climate, air quality, and human health: summary for policy-makers (AMAP, 2021).

  • Veira, A., Lasslop, G. & Kloster, S. Wildfires in a warmer climate: emission fluxes, emission heights, and black carbon concentrations in 20902099. J. Geophys. Res. Atmos. 121, 31953223 (2016).


    Google Scholar

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520523 (2019).


    Google Scholar

  • Turetsky, M. R. et al. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 33, L16403 (2006).


    Google Scholar

  • Kohlenberg, A. J., Turetsky, M. R., Thompson, D. K., Branfireun, B. A. & Mitchell, C. P. J. Controls on boreal peat combustion and resulting emissions of carbon and mercury. Environ. Res. Lett. 13, 035005 (2018).


    Google Scholar

  • Steffen, A. et al. Atmospheric mercury in the Canadian Arctic. Part I: a review of recent field measurements. Sci. Total Environ. 509510, 315 (2015).


    Google Scholar

  • Steffen, A. et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 8, 14451482 (2008).


    Google Scholar

  • Wang, S. et al. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion. Proc. Natl Acad. Sci. USA 116, 14479 (2019).


    Google Scholar

  • Abbatt, J. P. D. et al. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos. Chem. Phys. 12, 62376271 (2012).


    Google Scholar

  • Pratt, K. A. et al. Photochemical production of molecular bromine in Arctic surface snowpacks. Nat. Geosci. 6, 351356 (2013).


    Google Scholar

  • Toyota, K., McConnell, J. C., Staebler, R. M. & Dastoor, A. P. Airsnowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone. Atmos. Chem. Phys. 14, 41014133 (2014).


    Google Scholar

  • Marelle, L. et al. Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF-Chem 4.1.1. J. Adv. Model. Earth Syst. 13, e2020MS002391 (2021).


    Google Scholar

  • Durnford, D. & Dastoor, A. The behavior of mercury in the cryosphere: a review of what we know from observations. J. Geophys. Res. Atmos. 116, D06305 (2011).


    Google Scholar

  • Agnan, Y., Douglas, T. A., Helmig, D., Hueber, J. & Obrist, D. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges. Cryosphere 12, 19391956 (2018).


    Google Scholar

  • Travnikov, O. et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmos. Chem. Phys. 17, 52715295 (2017).


    Google Scholar

  • Travnikov, O. & Ilyin, I. in Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models (eds Mason, R. & Pirrone, N.) 571587 (Springer, 2009).

  • Holmes, C. D. et al. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10, 1203712057 (2010).


    Google Scholar

  • Dastoor, A. P. & Durnford, D. A. Arctic Ocean: is it a sink or a source of atmospheric mercury? Environ. Sci. Technol. 48, 17071717 (2014).


    Google Scholar

  • Fraser, A., Dastoor, A. & Ryjkov, A. How important is biomass burning in Canada to mercury contamination? Atmos. Chem. Phys. 18, 72637286 (2018).


    Google Scholar

  • Durnford, D. et al. How relevant is the deposition of mercury onto snowpacks? Part 2: a modeling study. Atmos. Chem. Phys. 12, 92519274 (2012).


    Google Scholar

  • Christensen, J. H., Brandt, J., Frohn, L. M. & Skov, H. Modelling of mercury in the Arctic with the Danish Eulerian Hemispheric Model. Atmos. Chem. Phys. 4, 22512257 (2004).


    Google Scholar

  • Skov, H. et al. Variability in gaseous elemental mercury at Villum Research Station, Station Nord, in North Greenland from 1999 to 2017. Atmos. Chem. Phys. 20, 1325313265 (2020).


    Google Scholar

  • Cole, A. S. et al. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmos. Chem. Phys. 13, 15351545 (2013).


    Google Scholar

  • Gay, D. A. et al. The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America. Atmos. Chem. Phys. 13, 1133911349 (2013).


    Google Scholar

  • Trseth, K. et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 19722009. Atmos. Chem. Phys. 12, 54475481 (2012).


    Google Scholar

  • Steffen, A. et al. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada. Atmos. Chem. Phys. 14, 22192231 (2014).


    Google Scholar

  • Toyota, K., Dastoor, A. P. & Ryzhkov, A. Airsnowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation. Atmos. Chem. Phys. 14, 41354167 (2014).


    Google Scholar

  • Sanei, H. et al. Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmos. Environ. 44, 16721681 (2010).


    Google Scholar

  • Pearson, C., Howard, D., Moore, C. & Obrist, D. Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions. Atmos. Chem. Phys. 19, 69136929 (2019).


    Google Scholar

  • Sprovieri, F. et al. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. 17, 26892708 (2017).


    Google Scholar

  • Zhou, H., Zhou, C., Hopke, P. K. & Holsen, T. M. Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. Sci. Total Environ. 637-638, 943953 (2018).


    Google Scholar

  • Qin, C., Wang, Y., Peng, Y. & Wang, D. Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmos. Environ. 142, 442451 (2016).


    Google Scholar

  • Douglas, T. A. & Blum, J. D. Mercury isotopes reveal atmospheric gaseous mercury deposition directly to the Arctic coastal snowpack. Environ. Sci. Technol. Lett. 6, 235242 (2019).


    Google Scholar

  • Galloway, J. N. & Likens, G. E. The collection of precipitation for chemical analysis. Tellus 30, 7182 (1978).


    Google Scholar

  • Kochendorfer, J. et al. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci. 22, 14371452 (2018).


    Google Scholar

  • Rasmussen, R. et al. How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811829 (2012).


    Google Scholar

  • Yang, D., Goodison, B. E., Ishida, S. & Benson, C. S. Adjustment of daily precipitation data at 10 climate stations in Alaska: application of World Meteorological Organization intercomparison results. Water Resour. Res. 34, 241256 (1998).


    Google Scholar

  • Yang, D. An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett. 26, 16251628 (1999).


    Google Scholar

  • Wang, X., Bao, Z., Lin, C.-J., Yuan, W. & Feng, X. Assessment of global mercury deposition through litterfall. Environ. Sci. Technol. 50, 85488557 (2016).


    Google Scholar

  • Kirk, J. L. et al. Climate change and mercury accumulation in Canadian high and subarctic lakes. Environ. Sci. Technol. 45, 964970 (2011).


    Google Scholar

  • Lehnherr, I. et al. The worlds largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290 (2018).


    Google Scholar

  • Muir, D. C. G. et al. Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores. Environ. Sci. Technol. 43, 48024809 (2009).


    Google Scholar

  • Korosi, J. B. et al. Long-term changes in organic matter and mercury transport to lakes in the sporadic discontinuous permafrost zone related to peat subsidence. Limnol. Oceanogr. 60, 15501561 (2015).


    Google Scholar

  • Douglas, T. A. et al. A pulse of mercury and major ions in snowmelt runoff from a small arctic Alaska watershed. Environ. Sci. Technol. 15, 1114511155 (2017).


    Google Scholar

  • Dommergue, A. et al. Deposition of mercury species in the Ny-lesund area (79N) and their transfer during snowmelt. Environ. Sci. Technol. 44, 901907 (2010).


    Google Scholar

  • Steffen, A. et al. Atmospheric mercury over sea ice during the OASIS-2009 campaign. Atmos. Chem. Phys. 13, 70077021 (2013).


    Google Scholar

  • Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 29, 854864 (2015).


    Google Scholar

  • Andersson, M. E., Sommar, J., Grdfeldt, K. & Lindqvist, O. Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 110, 190194 (2008).


    Google Scholar

  • Kalinchuk, V. V., Lopatnikov, E. A., Astakhov, A. S., Ivanov, M. V. & Hu, L. Distribution of atmospheric gaseous elemental mercury (Hg(0)) from the Sea of Japan to the Arctic, and Hg(0) evasion fluxes in the Eastern Arctic Seas: Results from a joint Russian-Chinese cruise in fall 2018. Sci. Total Environ. 753, 142003 (2021).


    Google Scholar

  • Berg, T., Pfaffhuber, K. A., Cole, A. S., Engelsen, O. & Steffen, A. Ten-year trends in atmospheric mercury concentrations, meteorological effects and climate variables at Zeppelin, Ny-lesund. Atmos. Chem. Phys. 13, 65756586 (2013).


    Google Scholar

  • Wang, X. et al. Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence. Environ. Sci. Technol. 54, 80838093 (2020).


    Google Scholar

  • Overland, J. E. Less climatic resilience in the Arctic. Weather Clim. Extremes 30, 100275 (2020).


    Google Scholar

  • Bougoudis, I. et al. Long-term time series of Arctic tropospheric BrO derived from UVVIS satellite remote sensing and its relation to first-year sea ice. Atmos. Chem. Phys. 20, 1186911892 (2020).


    Google Scholar

  • Goodsite, M. E., Plane, J. M. C. & Skov, H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 38, 17721776 (2004).


    Google Scholar

  • Goodsite, M. E., Plane, J. M. C. & Skov, H. Correction to A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 46, 5262 (2012).


    Google Scholar

  • Shah, V. et al. Improved mechanistic model of the atmospheric redox chemistry of mercury. Environ. Sci. Technol. 55, 1444514456 (2021).


    Google Scholar

  • Moore, C. W. et al. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature 506, 8184 (2014).


    Google Scholar

  • Douglas, T. A. et al. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophys. Res. Lett. 32, L04502 (2005).


    Google Scholar

  • Bishop, K. et al. Recent advances in understanding and measurement of mercury in the environment: terrestrial Hg cycling. Sci. Total Environ. 721, 137647 (2020).


    Google Scholar

  • Olson, C. L., Jiskra, M., Sonke, J. E. & Obrist, D. Mercury in tundra vegetation of Alaska: spatial and temporal dynamics and stable isotope patterns. Sci. Total Environ. 660, 15021512 (2019).


    Google Scholar

  • St. Pierre, K. A. et al. Importance of open marine waters to the enrichment of total mercury and monomethylmercury in lichens in the Canadian High Arctic. Environ. Sci. Technol. 49, 59305938 (2015).


    Google Scholar

  • Landers, D. H. et al. Mercury in vegetation and lake sediments from the US Arctic. Water Air Soil Pollut. 80, 591601 (1995).


    Google Scholar

  • Drbal, K., Elster, J. & Komarek, J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 11, 99101 (1992).


    Google Scholar

  • Zhou, J. & Obrist, D. Global mercury assimilation by vegetation. Environ. Sci. Technol. 55, 1424514257 (2021).


    Google Scholar

  • Wohlgemuth, L. et al. A bottom-up quantification of foliar mercury uptake fluxes across Europe. Biogeosciences 17, 64416456 (2020).


    Google Scholar

  • Olson, C., Jiskra, M., Biester, H., Chow, J. & Obrist, D. Mercury in active-layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Glob. Biogeochem. Cycles 32, 10581073 (2018).


    Google Scholar

  • Halbach, K., Mikkelsen, ., Berg, T. & Steinnes, E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567574 (2017).


    Google Scholar

  • Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 65736593 (2014).


    Google Scholar

  • Hoyer, M., Burke, J. & Keeler, G. Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation. Water Air Soil Pollut. 80, 199208 (1995).


    Google Scholar

  • Keeler, G. J., Gratz, L. E. & Al-wali, K. Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology 14, 7183 (2005).


    Google Scholar

  • Nelson, S. J. et al. A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques. Appl. Geochem. 23, 384398 (2008).


    Google Scholar

  • Bargagli, R., Agnorelli, C., Borghini, F. & Monaci, F. Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 39, 81508155 (2005).


    Google Scholar

  • Sherman, L. S., Blum, J. D., Douglas, T. A. & Steffen, A. Frost flowers growing in the Arctic ocean-atmospheresea icesnow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers. J. Geophys. Res. Atmos. 117, D00R10 (2012).


    Google Scholar

  • Douglas, T. A. et al. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 42, 15421551 (2008).


    Google Scholar

  • Domine, F. et al. The specific surface area and chemical composition of diamond dust near Barrow, Alaska. J. Geophys. Res. Atmos. 116, D00R06 (2011).


    Google Scholar

  • Xu, W., Tenuta, M. & Wang, F. Bromide and chloride distribution across the snow-sea ice-ocean interface: a comparative study between an Arctic coastal marine site and an experimental sea ice mesocosm. J. Geophys. Res. Oceans 121, 55355548 (2016).


    Google Scholar

  • Lalonde, J. D., Poulain, A. J. & Amyot, M. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36, 174178 (2002).


    Google Scholar

  • Poulain, A. J. et al. Redox transformations of mercury in an Arctic snowpack at springtime. Atmos. Environ. 38, 67636774 (2004).


    Google Scholar

  • Fan, X. et al. Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels. Atmos. Chem. Phys. 8, 34413457 (2008).


    Google Scholar

  • St. Louis, V. L. et al. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic. Environ. Sci. Technol. 39, 26862701 (2005).


    Google Scholar

  • Ferrari, C. P. et al. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-lesund, Svalbard. Atmos. Environ. 39, 76337645 (2005).


    Google Scholar

  • Kamp, J., Skov, H., Jensen, B. & Srensen, L. L. Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs). Atmos. Chem. Phys. 18, 69236938 (2018).


    Google Scholar

  • Mann, E. A. et al. Photoreducible mercury loss from Arctic snow is influenced by temperature and snow age. Environ. Sci. Technol. 49, 1212012126 (2015).


    Google Scholar

  • Dommergue, A. et al. The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys. Res. Lett. 30, 1621 (2003).


    Google Scholar

  • Boutron, C. F., Vandal, G. M., Fitzgerald, W. F. & Ferrari, C. P. A forty year record of mercury in central Greenland snow. Geophys. Res. Lett. 25, 33153318 (1998).


    Google Scholar

  • Brooks, S. et al. Temperature and sunlight controls of mercury oxidation and deposition atop the Greenland ice sheet. Atmos. Chem. Phys. 11, 82958306 (2011).


    Google Scholar

  • Zheng, J. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic. Sci. Total Environ. 509-510, 133144 (2015).


    Google Scholar

  • Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168173 (2019).


    Google Scholar

  • Forsberg, R., Srensen, L. & Simonsen, S. in Integrative Study of the Mean Sea Level and its Components (eds Cazenave, A., Champollion, N., Paul, F. & Benveniste, J.) 91106 (Springer, 2017).

  • Cirac, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the worlds glaciers and ice caps from the GRACE and GRACE follow-on missions. Geophys. Res. Lett. 47, e2019GL086926 (2020).


    Google Scholar

  • Friske, P. W. B. et al. Regional stream sediment and water geochemical reconnaissance data, southwestern Yukon. GEOSCAN https://doi.org/10.4095/194140 (1994).

  • Nagorski, S. A., Vermilyea, A. W. & Lamborg, C. H. Mercury export from glacierized Alaskan watersheds as influenced by bedrock geology, watershed processes, and atmospheric deposition. Geochim. Cosmochim. Acta 304, 3249 (2021).


    Google Scholar

  • Sndergaard, J., Riget, F., Tamstorf, M. P. & Larsen, M. M. Mercury transport in a low-Arctic river in Kobbefjord, West Greenland (64A degrees N). Water Air Soil Pollut. 223, 43334342 (2012).


    Google Scholar

  • Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859863 (2017).


    Google Scholar

  • Hawkings, J. R. et al. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat. Geosci. 14, 496502 (2021).


    Google Scholar

  • Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537552 (2014).


    Google Scholar

  • Zolkos, S. et al. Mercury export from Arctic great rivers. Environ. Sci. Technol. 54, 41404148 (2020).


    Google Scholar

  • Leitch, D. R. et al. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 373, 178195 (2007).


    Google Scholar

  • Lim, A. G. et al. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environ. Pollut. 254, 113083 (2019).


    Google Scholar

  • Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).


    Google Scholar

  • Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358370 (2020).


    Google Scholar

  • Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 71297167 (2015).


    Google Scholar

  • Halm, D. R. & Dornblaser, M. M. Water and sediment quality in the Yukon River and its tributaries between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004 (US Geological Survey, 2007).

  • Sukhenko, S. A., Papina, T. S. & Pozdnjakov, S. R. Transport of mercury by the Katun river, West Siberia. Hydrobiologia 228, 2328 (1992).


    Google Scholar

  • Fedorov, Y. A. et al. Patterns of mercury distribution in bottom sediments along the Severnaya Dvina-White Sea section. Dokl. Earth Sci. 436, 5154 (2011).


    Google Scholar

  • Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. 47, e2019GL085672 (2020).


    Google Scholar

  • van Pelt, W. J. J., Schuler, T. V., Pohjola, V. A. & Pettersson, R. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. J. Glaciol. 67, 485499 (2021).


    Google Scholar

  • Muntjewerf, L. et al. Accelerated Greenland ice sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1. J. Adv. Model. Earth Syst. 12, e2019MS002031 (2020).


    Google Scholar

  • Bliss, A., Hock, R. & Radi, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717730 (2014).


    Google Scholar

  • Mu, C. et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 161, 5460 (2019).


    Google Scholar

  • Gibbs, A. E., Ohman, K. A. & Richmond, B. M. National assessment of shoreline change:a GIS 11639 compilation of vector shorelines and associated shoreline change data for the north coast of Alaska, US-Canadian border to Icy Cape. Open-file report 2015-1030 (US Geological Survey, 2015).

  • Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406422 (2018).


    Google Scholar

  • Overduin, P. P. et al. Coastal changes in the Arctic. Geol. Soc. Lond. Spec. Publ. 388, 103129 (2014).


    Google Scholar

  • Outridge, P. M. & Sanei, H. Does organic matter degradation affect the reconstruction of pre-industrial atmospheric mercury deposition rates from peat cores? A test of the hypothesis using a permafrost peat deposit in northern Canada. Int. J. Coal Geol. 83, 7381 (2010).


    Google Scholar

  • Leitch, D. R. Mercury Distribution in Water and Permafrost of the Lower Mackenzie Basin, Their Contribution to the Mercury Contamination in the Beaufort Sea Marine Ecosystem, and Potential Effects of Climate Variation. Thesis, Univ. Manitoba (2006).

  • Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383400 (2012).


    Google Scholar

  • Irrgang, A. M. et al. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 123, 779800 (2018).


    Google Scholar

  • Bowman, K. L., Lamborg, C. H. & Agather, A. M. A global perspective on mercury cycling in the ocean. Sci. Total Environ. 710, 136166 (2020).


    Google Scholar

  • Lehnherr, I., St Louis, V. L., Hintelmann, H. & Kirk, J. L. Methylation of inorganic mercury in polar marine waters. Nat. Geosci. 4, 298302 (2011).


    Google Scholar

  • Kim, H. et al. Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front. Deep Sea Res. Part I 110, 9098 (2016).


    Google Scholar

  • Outridge, P. M., Macdonald, R. W., Wang, F., Stern, G. A. & Dastoor, A. P. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89111 (2008).


    Google Scholar

  • Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 19792006. J. Geophys. Res. Oceans 113, C07003 (2008).


    Google Scholar

  • Cavalieri, D. J. & Parkinson, C. L. Arctic sea ice variability and trends, 19792010. Cryosphere 6, 881889 (2012).


    Google Scholar

  • Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 6070 (2015).


    Google Scholar

  • Kirk, J. L. et al. Methylated mercury species in marine waters of the Canadian high and sub Arctic. Environ. Sci. Technol. 42, 83678373 (2008).


    Google Scholar

  • Hu, H. et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environ. Sci. Technol. 47, 1092210930 (2013).


    Google Scholar

  • Mller, A. K. et al. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol. Ecol. 87, 5263 (2014).


    Google Scholar

  • Whalin, L., Kim, E. H. & Mason, R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 107, 278294 (2007).


    Google Scholar

  • Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).


    Google Scholar

  • Beattie, S. A. et al. Total and methylated mercury in Arctic multiyear sea ice. Environ. Sci. Technol. 48, 55755582 (2014).


    Google Scholar

  • Chaulk, A., Stern, G. A., Armstrong, D., Barber, D. G. & Wang, F. Mercury distribution and transport across the oceansea-iceatmosphere interface in the Arctic Ocean. Environ. Sci. Technol. 45, 18661872 (2011).


    Google Scholar

  • Cossa, D. et al. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 40374052 (2011).


    Google Scholar

  • Klunder, M. B. et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J. Geophys. Res. Oceans 117, C01027 (2012).


    Google Scholar

  • Wang, F., Puko, M. & Stern, G. in Sea Ice (ed. Thomas, D. N.) 472491 (Wiley, 2017).

  • Tsubouchi, T. et al. The Arctic Ocean seasonal cycles of heat and freshwater fluxes: observation-based inverse estimates. J. Phys. Oceanogr. 48, 20292055 (2018).


    Google Scholar

  • sterhus, S. et al. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci. 15, 379399 (2019).


    Google Scholar

  • Lamborg, C. H., Hammerschmidt, C. R. & Bowman, K. L. An examination of the role of particles in oceanic mercury cycling. Phil. Trans. R. Soc. A 374, 20150297 (2016).


    Google Scholar

  • Puko, M. et al. Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. Environ. Sci. Technol. 48, 72807288 (2014).


    Google Scholar

  • Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35, e2020GB006769 (2021).


    Google Scholar

  • Aksentov, K. I. et al. Assessment of mercury levels in modern sediments of the East Siberian Sea. Mar. Pollut. Bull. 168, 112426 (2021).


    Google Scholar

  • Pelletier, N., Chtelat, J., Blarquez, O. & Vermaire, J. C. Paleolimnological assessment of wildfire-derived atmospheric deposition of trace metal(loid)s and major ions to subarctic lakes (Northwest Territories, Canada). J. Geophys. Res. Biogeosci. 125, e2020JG005720 (2020).


    Google Scholar

  • Schuster, P. F. et al. Mercury export from the Yukon River Basin and potential response to a changing climate. Environ. Sci. Technol. 45, 92629267 (2011).


    Google Scholar

  • Ivanov, V. V., Shapiro, G. I., Huthnance, J. M., Aleynik, D. L. & Golovin, P. N. Cascades of dense water around the world ocean. Prog. Oceanogr. 60, 4798 (2004).


    Google Scholar

  • Roeske, T., Loeff, M. R. V., Middag, R. & Bakker, K. Deep water circulation and composition in the Arctic Ocean by dissolved barium, aluminium and silicate. Mar. Chem. 132-133, 5667 (2012).


    Google Scholar

  • Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473 (2011).


    Google Scholar

  • Rontani, J.-F. et al. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic. Org. Geochem. 75, 6173 (2014).


    Google Scholar

  • Custodio, D., Ebinghaus, R., Spain, T. G. & Bieser, J. Source apportionment of atmospheric mercury in the remote marine atmosphere: Mace Head GAW station, Irish western coast. Atmos. Chem. Phys. 20, 79297939 (2020).


    Google Scholar

  • Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 1335 (2015).


    Google Scholar

  • Mason, R. P. et al. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 119, 101117 (2012).


    Google Scholar

  • Bravo, A. G. & Cosio, C. Biotic formation of methylmercury: a biophysicochemical conundrum. Limnol. Oceanogr. 65, 10101027 (2020).


    Google Scholar

  • Gordon, J., Quinton, W., Branfireun, B. A. & Olefeldt, D. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, Northwest Territories, Canada. Hydrol. Process. 30, 36273638 (2016).


    Google Scholar

  • Burt, A. et al. Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice. J. Geophys. Res. Oceans 118, 47464754 (2013).


    Google Scholar

  • Villar, E., Cabrol, L. & Heimbrger-Boavida, L.-E. Widespread microbial mercury methylation genes in the global ocean. Environ. Microbiol. Rep. 12, 277287 (2020).


    Google Scholar

  • Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 1181011820 (2013).


    Google Scholar

  • Lee, C.-S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 16261639 (2016).


    Google Scholar

  • Wang, F., Macdonald, R. W., Armstrong, D. A. & Stern, G. A. Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. Environ. Sci. Technol. 46, 1182111828 (2012).


    Google Scholar

  • Schartup, A. T. et al. A model for methylmercury uptake and trophic transfer by marine plankton. Environ. Sci. Technol. 52, 654662 (2018).


    Google Scholar

  • Wu, P. et al. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: a meta-analysis. Sci. Total Environ. 646, 357367 (2019).


    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.