Now Reading
Environmental benefits projected from replacing beef with microbial meat
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

Environmental benefits projected from replacing beef with microbial meat

  • Poore, J. T. & Nemecek T. Reducing food’s environmental impacts through consumers and producers. Science 360, 987992 (2018).

    ADS
    CAS
    PubMed

    Google Scholar

  • Soergel, B. et al. The UN 2030 Agenda calls for a sustainable development pathway to climate action. Nat. Clim. Change 11, 656664 (2021).

    ADS

    Google Scholar

  • Hashempour-Baltork, F., Khosravi-Darani, K., Hosseini, H., Farshi, P. & Reihani, S. F. S. Mycoproteins as safe meat substitutes. J. Clean. Prod. 253, 119958 (2020).

    CAS

    Google Scholar

  • Finnigan, T. J. A. et al. A symposium review of Mycoprotein: The future of nutritious non-meat protein. Curr. Dev. Nutr. 3, nzz021 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Stephens, N. et al. Bringing cultured meats to market: technical and regulatory challenges in cellular farming. Trends in Food Sci. Technol. 78, 155166 (2018).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Linder, T. Making a case for edible microorganisms to be an integral part a more sustainable and resilient food manufacturing system. Food Security 11, 265278 (2019).


    Google Scholar

  • Rubio, N. R. Xiang and Kaplan, D.L. Plant-based as well as cell-based approaches to meat production. Nat. Commun. 11, 6276 (2020).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Food and Agriculture Organization of the United Nations. Data on food and agriculture. FAOSTAT https://www.fao.org/faostat(accessed 26. March 2021).

  • Herrero, M. et al. Potential greenhouse gas mitigation opportunities in the livestock sector. Nat. Clim. Clim. 6, 452461 (2016).

    ADS

    Google Scholar

  • Crippa, M. et al. A third of global anthropogenic GHG emission are caused by food systems. Nat. Nat. 2, 198209 (2021).

    CAS

    Google Scholar

  • Steinfeld, H. & Gerber P. Livestock production in the global environment: Do you want to consume less or produce more? Proc. Natl Acad. Sci. USA 107, 1823718238 (2010).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Weindl, I. et al. Weindl, I. et al. Livestock and human land use: productivity trends and dietary choices that drive future land and carbon dynamics. Glob. Planet. Change 159, 110 (2017).

    ADS

    Google Scholar

  • Heinke, J. et al. Water use in global livestock productionopportunities and constraints for increasing water productivity. Water Resour. Res. 56, e2019WR026995 (2020).

    ADS

    Google Scholar

  • Godfray, H. C. J. et al. Food security: The challenge of feeding 9 Billion people. Science 327, 812818 (2010).

    ADS
    CAS
    PubMed

    Google Scholar

  • Popp, A. et al. Future land-use in the shared socioeconomic pathways Glob. Environ. Change 42, 331345 (2017).


    Google Scholar

  • Willett, W. et al. Food in the Anthropocene – The EATLancet Commission on healthy eating habits from sustainable food systems Lancet 393, 447492 (2019).

    PubMed

    Google Scholar

  • Sun, Z. et al. Only dietary changes in high-income countries can result in a substantial double climate dividend. Nat. Nat. 3, 2937 (2022).

    CAS

    Google Scholar

  • Fehr, A., Gazdecki, M., Vha, M., Szakly, M. & Szakly, Z. This comprehensive review outlines the benefits and barriers to switching to a plant-based diet. Sustainability 12, 4136 (2020).


    Google Scholar

  • Herrero, M. et al. Innovation can help accelerate the transition to a sustainable system of food. Nat. Nat. 1, 266272 (2020).


    Google Scholar

  • Stephens, N. & Ellis. Cellular agriculture in Britain: a review. Wellcome Open Res. 5, 12 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • Ciani, M. et al. Microbes: Food for the Future Foods 10, 971 (2021).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sillman, J. et al. A life cycle environmental sustainability analysis for microbial protein production using power-to-food methods. Int. J. Assess the Life Cycle. 25, 21902203 (2020).

    CAS

    Google Scholar

  • Jrvi, N. & Maljanen N. – L., Kobayashi Y., Ryynnen T. & Tuomisto L. An attributional Life Cycle Assessment of Microbial Protein Production: A case study on hydrogen-oxidizing Bacteria. Sci. Total Environ. 776, 145764 (2021).

    ADS
    PubMed

    Google Scholar

  • Edwards, D. G. & Cummings J. H. The protein content of mycoprotein. Proc. Nutr. Soc. 69, E331 (2010).


    Google Scholar

  • Souza Filho, P. F., Andersson, D., Ferreira, J. A. & Taherzadeh M. J. Mycoprotein – Environmental impact and health aspects. World J. Microbiol. Biotechnol. 35, 147 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Smetana, S., Mathys, A., Knoch, A. V. Meat alternatives: Life cycle assessment of the most well-known meat substitutes. Int. J. Assess the Life Cycle. 20, 12541267 (2015).

    CAS

    Google Scholar

  • Alexander, P. et al. Alexander, P. et al. Could the consumption of insects, cultured or imitation meat reduce global agricultural land usage? Glob. Food Sec. 15, 2232 (2017).


    Google Scholar

  • Pikaar, I. et al. Industrial feed production is a way to decouple livestock and land use. Environ. Sci. Technol. 52, 73517359 (2018).

    ADS
    CAS
    PubMed

    Google Scholar

  • Lapea, D. et al. Production and characterisation of yeasts grown in media containing spruce-derived sugars, and protein hydrolysates derived from chicken byproducts. Microb. Cell Fact. 19, 19 (2020).

    PubMed
    PubMed Central

    Google Scholar

  • Dietrich, J. P. et al. MAgPIE4 – A modular open-source framework to model global land systems. Geosci. Model Dev. 12, 12991317 (2019).

    ADS
    CAS

    Google Scholar

  • Dietrich, J. P. et al. MAgPIE – An Open Source Land-Use Modeling Framework, v.4.3.4. Zenodo https://doi.org/10.5281/zenodo.4730378 (2021).

  • Jgermeyr J. Pastor, A. Biemans H. Gerten, D. Reconciling irrigation food production with the environment for sustainable development goals implementation. Nat. Commun. 8, 15900 (2017).

    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Riahi, K. et al. An overview of the shared socioeconomic pathways and the energy, land and greenhouse gas emissions implications. Glob. Environ. Change 42, 153168 (2017).


    Google Scholar

  • Humpender, F. et al. How to solve sustainability trade-offs in large-scale bioenergy production Environ. Res. Lett. 13, 024011 (2018).

    ADS

    Google Scholar

  • Mattick, C. S.; Landis, A. E.; Allenby, B. R. and Genovese N. J. An anticipatory life cycle analysis for in vitro biomass cultivation to cultured meat production in America. Environ. Sci. Technol. 49, 1194111949 (2015).

    ADS
    CAS
    PubMed

    Google Scholar

  • Tuomisto, H. L. & Teixeira de Mattos, M. J. The environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 61176123 (2011).

    ADS
    CAS
    PubMed

    Google Scholar

  • Lynch, J. R. Pierrehumbert and Lynch, J. Climate impacts of cultured beef cattle and cultured meat. Front. Sustain. Food Syst. 3, 5 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Mendly-Zambo, Z., Powell, L. J. L. L. Dairy 3.0: Cellular agriculture and the future milk. Food Cult. Soc. 24, 675693 (2021).


    Google Scholar

  • Jrvi, N. et al. Ovalbumin production using Trichoderma reeseiCulture and low-carbon energies could reduce the environmental effects of chicken-egg derived ovalbumin. Nat. Nat. 2, 10051013 (2021).


    Google Scholar

  • Luderer, G. et al. The impact of declining renewable energy prices on electrification under low-emission scenarios. Nat. Nat. 7, 3242 (2022).

    ADS

    Google Scholar

  • M. Herrero, Thornton, P. K. Gerber, P. Gerber, and Reid, R. S. Livestock livelihoods and the environment: Understanding the trade-offs Curr. Opin. Environ. Sustain. 1, 111120 (2009).


    Google Scholar

  • Jones, M. and Gandia A. John, S. & Bismarck A. Biofabrication of leather-like material using fungi Nat. SustaIn. 4, 916 (2021).


    Google Scholar

  • Rogelj, J. et al. in Special Report on Global Warming of 1.5C (eds Masson-Delmotte, V. et al.) (IPCC, WMO, 2018).

  • Smith, P. et al. In Climate Change and Land: An IPCC special report on Climate Change, Desertification and Land Degradation. Sustainable Land Management, Food Security and Greenhouse Gas Fluxes In Terrestrial Ecosystems. (IPCC, 2019).

  • Lotze-Campen, H. et al. Global food demand, productivity growth and scarcity of land or water resources: A spatially explicit mathematical programming approach. Agric. Econ. 39, 325338 (2008).


    Google Scholar

  • Bondeau, A. et al. Modelling the role agriculture in the 20th century’s global terrestrial carbon balance. Glob. Change Biol. 13, 679706 (2007).

    ADS

    Google Scholar

  • Mller, C. and Robertson, R. D. Future crop productivity projections for global economic modeling. Agric. Econ. 45, 3750 (2014).


    Google Scholar

  • Dietrich, J. P., Popp, A. & Lotze Campen, H. Clustering methods in a global land-use plan: Reducing information loss and increasing accuracy Ecol. Modell. 263, 233243 (2013).


    Google Scholar

  • Stevanovi, M. et al. Mitigation strategies for greenhouse gases emissions from agriculture, land-use change, and food prices Environ. Sci. Technol. 51, 365374 (2017).

    ADS
    PubMed

    Google Scholar

  • Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet changes and non-CO associated non-CO2Agricultural production can cause greenhouse gases. Glob. Environ. Change 20, 451462 (2010).


    Google Scholar

  • Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the planet in 2050, and potential to reduce nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    ADS
    CAS
    PubMed

    Google Scholar

  • Bonsch, M. et al. Trade-offs in land and water requirements for large scale bioenergy production Glob. Change Biol. Bioenergy 8, 1124 (2014).


    Google Scholar

  • Smil, V. Worldwide transformation in diets, burdens of production of meat, and opportunities for new food proteins. Enzyme Microb. Technol. 30, 305311 (2002).

    CAS

    Google Scholar

  • Shepon, A., Eshel G., Noor E., & Milo R. Energy, protein feed-to food conversion efficiencies and potential food security benefits from dietary changes. Environ. Res. Lett. 11, 105002 (2016).

    ADS

    Google Scholar

  • Kc, S. & Lutz, W. Human core of the shared socioeconomic paths: Population scenarios by age, sex, and education for all countries up to 2100 Glob. Environ. Change 42, 181192 (2017).

    PubMed
    PubMed Central

    Google Scholar

  • Dellink, R., Chateau, J., Lanzi, E. & Magn, B. Long-term projections of economic growth in the shared socioeconomic pathways. Glob. Environ. Change 42, 200214 (2017).


    Google Scholar

  • The World Bank. The World Development Indicators. https://databank.worldbank.org/source/world-development-indicators(accessed on 19 March 2019).

  • James, S. L., Gubbins, P., Murray, C. J. Gakidou E., Gubbins P., Murray C. J. Popul. Health Metr. 10, 12 (2012).

    PubMed
    PubMed Central

    Google Scholar

  • Bodirsky, B. L. et al. mrvalidation: madrat data preparation for validation purposes. Zenodo https://doi.org/10.5281/zenodo.4317827 (2020).

  • Bodirsky, B. L. et al. Global food demand scenarios in the 21st Century PLoS ONE 10, e0139201 (2015).

    PubMed
    PubMed Central

    Google Scholar

  • Foley, J. A. et al. Solutions for a cultivated world. Nature 478, 337342 (2011).

    ADS
    CAS
    PubMed

    Google Scholar

  • Wada, Y. et al. Global monthly water stress: 2. Water demand and water stress severity. Water Resour. Res. 47, W07518 (2011).

    ADS

    Google Scholar

  • Wisser, D. et al. Global irrigation water demands: Variability and uncertainties due to climate and agricultural data sets. Geophys. Res. Lett. 35, L24408 (2008).

    ADS

    Google Scholar

  • Gasser, T. et al. Historical CO2Emissions from land-use and land cover change, and their uncertainty. Biogeosciences 17, 40754101 (2020).

    ADS
    CAS

    Google Scholar

  • European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency. EDGAR – Emissions Database for Global Atmospheric Research. https://edgar.jrc.ec.europa.eu (2011).

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.