Now Reading
A Dutch population’s gut microbiome is influenced by environmental factors
[vc_row thb_full_width=”true” thb_row_padding=”true” thb_column_padding=”true” css=”.vc_custom_1608290870297{background-color: #ffffff !important;}”][vc_column][vc_row_inner][vc_column_inner][vc_empty_space height=”20px”][thb_postcarousel style=”style3″ navigation=”true” infinite=”” source=”size:6|post_type:post”][vc_empty_space height=”20px”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

A Dutch population’s gut microbiome is influenced by environmental factors

  • Lynch, S. V. & Pedersen, O. The human intestinal microbiome: health and disease. N. Engl. J. Med. 375, 23692379 (2016).

    CAS

    Google Scholar

  • Liang, D. Leung, R. K. Guan, W., & Au W. W. Involvement in the gut microbiome and human health and disease: brief overview and gaps in knowledge and research opportunities Gut Pathog. 10, 3 (2018).


    Google Scholar

  • Zmora N., Soffer E., & Elinav E. Transforming Medicine with the Microbiome. Sci. Transl. Med. 11, eaaw1815 (2019).

    CAS

    Google Scholar

  • Garber K. First microbiome-based drugs clear phase III. Clinical trial turnaround. Nat. Rev. Drug Discov. 19, 655656 (2020).

    CAS

    Google Scholar

  • Zhernakova, A. et al. A population-based analysis of metagenomics reveals markers for gut diversity and composition. Science 352, 565569 (2016).

    ADS
    CAS

    Google Scholar

  • Gaulke, C. A. & Sharpton, T. J. The influence geography and ethnicity have on the composition of the human microbiome. Nat. Med. 24, 14951496 (2018).

    CAS

    Google Scholar

  • Vatanen, T. et al. Early life: Genomic variation and strain-specific functional adaption in the human gut microbiome Nat. Microbiol. 4, 470479 (2019).

    CAS

    Google Scholar

  • Berry, D. & Widder S. Detecting keystone species and co-occurrence networks in microbial interactions. Front. Microbiol. 5, 219 (2014).


    Google Scholar

  • Miquel, S. et al. Faecalibacterium prausnitziiand the health of the human intestinal tract. Curr. Opin. Microbiol. 16, 255261 (2013).

    CAS

    Google Scholar

  • Huang, R. et al. Metagenome-wide association analysis of the alterations to the intestinal microbiome composition in ankylosing patients and the effects of traditional and herbal treatments. J. Med. Microbiol. 69, 797805 (2020).

    CAS

    Google Scholar

  • Kandeel, W. A. et al. Impact of ClostridiumBacteria in children with autism spectrum disorders and their anthropometric measurements. J. Mol. Neurosci. 70, 897907 (2020).

    CAS

    Google Scholar

  • Tap, J. et al. Identification of an intestinal microbiota sign associated with severity of irritable-bowel syndrome. Gastroenterology 152, 111123.e8 (2017).


    Google Scholar

  • Costea, P. I. et al. The landscape of gut microbial community composition: Enterotypes Nat. Microbiol. 3, 816 (2018).

    CAS

    Google Scholar

  • Goodrich, J. K. et al. Genetic determinants of the microbiome in the gut in UK twins Cell Host Microbe 19, 731743 (2016).

    CAS

    Google Scholar

  • GEM Project Research Consortium. In a large healthy cohort, association of host genome and intestinal microbial composition. Nat. Genet. 48, 14131417 (2016).


    Google Scholar

  • Wang, K. et al. The prognosis markers of HBV-related acute-on–chronic liver disease are the gut microbiota. Gut Microbes 13, 115 (2021).


    Google Scholar

  • Wang, P. et al. Hypertensive patients with hypertension may have a different smoking status. J. Clin. Hypertens. 23, 14311446 (2021).

    CAS

    Google Scholar

  • Gupta, V. K. et al. A predictive index of health status using species-level microbiome profiling. Nat. Commun. 11, 116 (2020).

    CAS

    Google Scholar

  • Bowyer, R. et al. A TwinsUK cohort study of socioeconomic status, gut microbiome, and other factors. Microorganisms 7, 17 (2019).


    Google Scholar

  • Yatsunenko, T. et al. Microbiome of the human gut viewed across ages and geographies. Nature 486, 222227 (2012).

    ADS
    CAS

    Google Scholar

  • Vandeputte, D. et al. Consistency in stool is strongly linked to gut microbiota composition, enterotypes, and bacterial growth rates. Gut 65, 5762 (2016).

    CAS

    Google Scholar

  • Davenport, E. R. et al. Seasonal variations in the composition of the microbiome in the human gut. PLoS ONE 9, e90731 (2014).

    ADS

    Google Scholar

  • The Microbiome Quality Control Project Consortium. The Microbiome Quality Control project consortium has assessed variation in microbial community amplicon sequence. Nat. Biotechnol. 35, 10771086 (2017).


    Google Scholar

  • Toorn, J. E. et al. Seasonal variation in diet quality in a large Dutch population-based cohort of the elderly and middle-aged. Eur. J. Nutr. 59, 493 (2020).


    Google Scholar

  • Tucker, P. & Gilliland, J. A systematic review of the effects of weather and season on physical activities. Public Health 121, 909922 (2007).

    CAS

    Google Scholar

  • Rothschild, D. et al. The environment has a greater influence on human microbiota than host genetics. Nature 555, 210215 (2018).

    ADS
    CAS

    Google Scholar

  • Song, S. J. et al. The microbiota of cohabiting members of a family is shared with their dogs and with one another. eLife 2, e00458 (2013).


    Google Scholar

  • Xie, H. et al. Shotgun metagenomics of 250 twins reveals environmental and genetic effects on the gut microbiome. Cell Syst. 3, 572584.e3 (2016).

    CAS

    Google Scholar

  • Oh, M. and Zhang, L. DeepMicro is deep representation learning for disease prediction based upon microbiome data. Sci. Rep. 10, 6026 (2020).

    ADS
    CAS

    Google Scholar

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462467 (2019).

    CAS

    Google Scholar

  • Imhann, F. et al. Proton pump inhibitors have a negative impact on the microbiome. Gut 65, 740748 (2016).

    CAS

    Google Scholar

  • Wu, H. et al. Metformin alters gut microbiome in individuals with type 2 diabetes that is not under treatment. This contributes to the drug’s therapeutic effects. Nat. Med. 23, 850858 (2017).

    CAS

    Google Scholar

  • Bach, J. F. Hygiene Hypothesis in Autoimmunity: The Role of Pathogens and Commensals Nat. Rev. Immunol. 18, 105120 (2018).

    CAS

    Google Scholar

  • Marynowski M. Role environmental pollution plays in irritable bowel syndrome. World J. Gastroenterol. 21, 11371 (2015).

    CAS

    Google Scholar

  • Dujardin, C. E. et al. Review: The impact of air quality on the gastrointestinal microbiome Environ. Res. 186, 109485 (2020).

    CAS

    Google Scholar

  • Fouladi, F. et al. Shotgun metagenomic sequencing has shown that air pollution is associated with gut microbiome. Environ. Int. 138, 105604 (2020).

    CAS

    Google Scholar

  • Manor, O. et al. In thousands of people, health markers and disease markers are related to gut microbiome composition. Nat. Commun. 11, 5206 (2020).

    ADS
    CAS

    Google Scholar

  • Sogin M. L. Morrison H. McLellan S. McLellan S. Welch D. Huse S. The rare Biosphere: Separating fact and fiction Genome Biol. 11, I19 (2010).


    Google Scholar

  • Sun, Z. et al. Benchmarking metagenomic profilers: Challenges Nat. Methods 18, 618626 (2021).

    CAS

    Google Scholar

  • Scholtens, S. et al. Cohort Profile: LifeLines, an intergenerational cohort study and biobank. Int. J. Epidemiol. 44, 11721180 (2015).


    Google Scholar

  • Tigchelaar, E. F. et al. Cohort profile: LifeLines Deep, a prospective cohort study in the northern Netherlands, with baseline characteristics and study design. BMJ Open 5, e006772 (2015).


    Google Scholar

  • Siebelink, E., Geelen, A. & de Vries J. H. M. Self reported energy intake by FFQ compared to actual energy intake to maintain bodyweight in 516 adults. Br. J. Nutr. 106, 274281 (2011).

    CAS

    Google Scholar

  • Brouwer-Brolsma, E. M. et al. Design of the National Dietary Assessment Reference Database, (NDARD), for the Dutch population: The rationale. Nutrients 9, 1136 (2017).


    Google Scholar

  • Willett, W. C. et al. Semiquantitative food frequency questionnaire: Validity and reproducibility Am. J. Epidemiol. 122, 5165 (1985).

    CAS

    Google Scholar

  • Vinke, P. C. et al. Development of the food-based Lifelines Diet Score and its application in 129.369 Lifelines participants. Eur. J. Clin. Nutr. 72, 11111119 (2018).


    Google Scholar

  • Mller, G. et al. A protein diet score that includes plant and animal protein. It examines the relationship with HbA1c/eGFRthe PREVIEW Project. Nutrients 9, 763 (2017).


    Google Scholar

  • Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Rethinking the duration of intervention: The effect of diet on gut microbiota. Nutrients 11, 2862 (2019).


    Google Scholar

  • Eeftens, M. et al. Development of land-use regression models for PM2.5PM2.5 absorbance, PM10PMcoarseResults from the ESCAPE project in 20 European study areas Environ. Sci. Technol. 46, 1119511205 (2012).

    ADS
    CAS

    Google Scholar

  • Beelen, R. et al. Development of NO2NOxFor estimating air pollution exposure in 36 areas of Europe, land use regression models were used by the ESCAPE project. Atmos. Environ. 72, 1023 (2013).

    ADS
    CAS

    Google Scholar

  • Eeftens, M. et al. Stability of spatial contrasts in NO measured and modelled2 over time. Occup. Environ. Med. 68, 765770 (2011).

    CAS

    Google Scholar

  • Ford, A. C. et al. Validation of Rome III criteria for diagnosing irritable stool syndrome in secondary care Gastroenterology 145, 12621270.e1 (2013).


    Google Scholar

  • Angulo, P. et al. The NAFLD Fibrosis Score: A noninvasive system that identifies liver disease in patients with NAFLD. Hepatology 45, 846854 (2007).

    CAS

    Google Scholar

  • Bedogni, G. et al. The fatty liver indicator: A simple and accurate predictor for hepatic-steatosis among the general population. BMC Gastroenterol. 6, 33 (2006).

    ADS

    Google Scholar

  • Imhann, F. et al. 1000IBD Project: Multi-omics data from 1000 patients with inflammatory bowel diseases; data release 1. BMC Gastroenterol. 19, 5 (2019).


    Google Scholar

  • McIver, L. J. et al. bioBakery – A metaomic analysis and environment. Bioinformatics 34, 12351237 (2018).

    CAS

    Google Scholar

  • Langmead, B. & Salzberg S. L. Fast-gaped-read alignment with Bowtie Nat. Methods 9, 357359 (2012).

    CAS

    Google Scholar

  • Truong, D. T. et al. MetaPhlAn2 to enhance metagenomic taxonomic profileing Nat. Methods 12, 902903 (2015).

    CAS

    Google Scholar

  • Franzosa, E. A. et al. Functional profiling at the species level of metatranscriptomes and metagenomes. Nat. Methods 15, 962968 (2018).

    CAS

    Google Scholar

  • Buchfink, B. Xie. C. & Huson. D. H. Fast and sensitive alignment of proteins using DIAMOND. Nat. Methods 12, 5960 (2015).

    CAS

    Google Scholar

  • UniProt Consortium. UniProt is the universal protein knowledgebase. Nucleic Acids Res. 45, D158D169 (2017).


    Google Scholar

  • Swertz, M. A. et al. The MOLGENIS Toolkit: Rapid prototyping of biosoftware with the push of one button BMC Bioinf. 11, S12 (2010).


    Google Scholar

  • Dixon, P. VEGAN – A package of R functions to support community ecology J. Veg. Sci. 14, 927930 (2003).


    Google Scholar

  • Hsieh T. C., Ma K. H., & Chao A. iNEXT is an R package for rarefaction (Hill numbers). Methods Ecol. Evol. 7, 14511456 (2016).


    Google Scholar

  • Kaminski, J. et al. ShortBRED provides high-specificity targeted functional profiling for microbial communities. PLoS Comput. Biol. 11, e1004557 (2015).


    Google Scholar

  • Chen, L. et al. VFDB: A reference database of bacterial virulence genes. Nucleic Acids Res. 33, D325D328 (2005).

    CAS

    Google Scholar

  • Jia, B. et al. CARD 2017: Expanding and model-centric curation to the comprehensive database on antibiotic resistance Nucleic Acids Res. 45, D566D573 (2017).

    CAS

    Google Scholar

  • Ziyatdinov, A. et al. lme4qtl: Linear mixed models with flexible covariance structures for genetic studies of related people BMC Bioinf. 19, 68 (2018).


    Google Scholar

  • Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Series B Stat. Methodol. 44, 139177 (1982).

  • Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804810 (2007).

    ADS
    CAS

    Google Scholar

  • Qin, J. et al. Metagenomic sequencing established a human gut microbiome gene catalogue. Nature 464, 5965 (2010).

    CAS

    Google Scholar

  • Goodrich, J. K. et al. The microbiome of the gut is shaped by genes. Cell 159, 789799 (2014).

    CAS

    Google Scholar

  • Friedman, J. Friedman, J. & Alm E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    ADS
    CAS

    Google Scholar

  • Chen, L. et al. Chen, L. et al. Gut microbial abundance networks show specificity in obesity and inflammatory bowel diseases. Nat. Commun. 11, 4018 (2020).

    ADS
    CAS

    Google Scholar

  • Arumugam, M. et al. The enterotypes of the human microbiome. Nature 473, 174180 (2011).

    CAS

    Google Scholar

  • View Comments (0)

    Leave a Reply

    Your email address will not be published.